Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
More than 41% of households and 2.8 billion people worldwide depend on solid fuels including coal. The available coal reserves in Indonesia are 31.7 billion tons and only enough for the next 65 years. This makes the government encourage the development of research on the utilization of biomass waste as alternative energy. Efforts are made to convert biomass waste in the form of rubber wood into alternative solid fuels through the pyrolysis process. Biochar is produced from biomass through pyrolysis, resulting in excellent combustion quality. Biochar from pyrolysis is combined with brown coal and molasses adhesive to create coal biobriquettes as an alternative solid fuel. The purpose of this study was to identify the optimal composition of brown coal and biochar in producing coal biobriquettes with the best quality. The pyrolysis process of rubber wood waste was carried out at a temperature of 350–400 °C for 2 hours. This study used variations in the composition of biochar (75%, 80%, 85%, 90%, and 95%) and brown coal (5%, 10%, 15%, 20%, and 25%) and 15 mL molasses adhesive. Testing the combustion quality of coal biobriquettes through proximate analysis and value. The results showed that the most optimal product was a sample with a composition of 85% biochar and 15% brown coal.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
188--199
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya 30662, South Sumatera, Indonesia
Bibliografia
- 1. Abdullah, N., Mohd Taib, R., Mohamad Aziz, N.S., Omar, M.R., Md Disa, N. 2023. Banana pseudostem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1).
- 2. Adhani, L., Asrya, M.A.M., Octavia, S.I., Sindiany, I.I. 2019. Analysis of alternative fuel composite biobriquettes from water hyacinth with cow manure adhesive. Al-Kimiya, 6(2), 81–86. (In Indonesian)
- 3. Afrah, B.D., Riady, M.I., Cundari, L., Rizan, M.A., Aryansyah, A.D. 2020. Design of liquid smoke production equipment with pyrolysis method using fusion 360 software. Journal of Chemical Engineering, 26(3), 113–121. (In Indonesian)
- 4. Ali, L., Palamanit, A., Techato, K., Ullah, A., Chowdhury, S., Phoungthong, K. 2022. Characteristics of biochars derived from the pyrolysis and co-pyrolysis of rubberwood sawdust and sewage sludge for further applications. Sustainability, 14(1), 21.
- 5. Amini, M.H.M., Rasat, M.S.M., Ahmad, M.I., Wahab, R., Elham, P., Wan, W.M.N.A.R., Ramle, N.H. 2017. Chemical composition of small diameter wild leucaena leucocephala species. ARPN Journal of Engineering and Applied Sciences, 12(10), 3169–3173.
- 6. Azman, N.A.M., Pa, N.F.C. 2021. Production of smokeless biofuel briquettes from palm kernel shell assisted with slow pyrolysis treatment. Progress in Engineering Application and Technology, 2(1), 38–49.
- 7. Baskin, C.C., Baskin, J.M. 2022. Plant regeneration from seeds: a global warming perspective (1st ed.). Academic Press.
- 8. Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L., Almeida, V.C. 2018. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicology and Environmental Safety, 147(1), 64–71.
- 9. Bembenek, M., Krawczyk, J., Frocisz, Ł., Śleboda, T. 2021. The analysis of the morphology of the saddle‐shaped bronze chips briquettes produced in the roller press. Materials, 14(6), 1–18.
- 10. Borman, G.L., Ragland, K.W. 1998. Combustion Engineering. Mc Graw-Hill.
- 11. Brayen, D., Windiarti, R.Y.P., Erlinawati, Zikri, A. 2022. Effect of process variables and palm shell addition on sawdust biopelet characteristics. Distillation Journal, 7(1), 41–51. (In Indonesian)
- 12. Efiyanti, L., Wati, S.A., Setiawan, D., Pari, G. 2020. Chemical properties and charcoal quality of five wood species from west kalimantan. Journal of Forest Products Research, 38(1), 55–68. (In Indonesian)
- 13. Hakika, D.C., Jamilatun, S., Zahira, S., Setyarini, R., Rahayu, A., Ardiansyah, R.S. 2023. Combustion quality analysis of bio-briquettes from mixture of coconut shell waste and coal with tapioca flour adhesive. Indonesian Journal of Chemical Engineering, 1(1), 1–10.
- 14. Haliza, H.N., Saroso, H. 2023. Production of biobriquettes from coconut coir and teak wood powder using tapioca starch adhesive. DISTILAT, 8(1),238–244. (In Indonesian)
- 15. Hou, J., Pugazhendhi, A., Sindhu, R., Vinayak, V., Thanh, N.C., Brindhadevi, K., Lan Chi, N. T., Yuan, D. 2022. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environmental Research, 214(2), 1–8.
- 16. Ifa, L., Yani, S., Nurjannah, N., Sabara, Z., Yuliana, Y., Kusuma, H.S., Mahfud, M. 2019. Production of bio-briquette from biochar derived from pyrolysis of cashew nut waste. Ecology, Environment and Conservation, 25(1), S125–S131.
- 17. Iskandar, T., Rofiatin, U. 2017. Biochar characteristics based on biomass types and pyrolysis process parameters. Journal of Chemical Engineering, 12(1), 28–34. (In Indonesian)
- 18. Kongprasert, N., Wangphanich, P., Jutilarptavorn, A. 2019. Charcoal briquettes from madan wood waste as an alternative energy in Thailand. Procedia Manufacturing, 30, 128–135.
- 19. Li, Z., Liu, D., Cai, Y., Si, G., Wang, Y. 2020. Pore structure and compressibility characteristics of heat-treated coals by N2 adsorption/desorption and mercury intrusion porosimetry. Energy and Fuels, 34(3), 3173–3187.
- 20. López-Beceiro, J., Díaz-Díaz, A.M., Álvarez-García, A., Tarrío-Saavedra, J., Naya, S., Artiaga, R. 2021. The complexity of lignin thermal degradation in the isothermal context. Processes, 9(7).
- 21. Masthura, M., Daulay, A.H., Desgira, H.W. 2022. Effect of adhesive variation on the calorific value of briquettes from tea leaf powder. JISTech (Journal of Islamic Science and Technology), 7(1), 15–23. (In Indonesian)
- 22. Nurrahman, A., Permana, E., Gusti, D.R., Lestari, I. 2021. Effect of activator concentration on the quality of activated carbon from lignite coal. Journal of Daur Lingkungan, 4(2), 44–53. (In Indonesian)
- 23. Partiwi, W., Prabowoi, H. 2021. Proximate analysis of biocoal briquettes blend of CV. Bara Mitra Kencana Seam 1 Coal with Coconut Shell Charcoal. Journal of Bina Tambang, 6(5), 267–273. (In Indonesian)
- 24. Rath, D.P., Mahapatro, A., Pattanayak, B. 2023. Briquette production and performance evaluation from coal and agricultural waste. Materials Today: Proceedings, December 2023, 1–5.
- 25. Rauf, A.S., Widodo, S., Nawir, A. 2018. Improving calorific value of lignite coal with water and palm oil agglomeration method at PT. Indonesia Power UJP PLTU Barru. Jurnal Geomine, 6(3), 124. (In Indonesian)
- 26. Reza, M.S., Ahmed, A., Caesarendra, W., Abu Bakar, M.S., Shams, S., Saidur, R., Aslfattahi, N., Azad, A.K. 2019. Acacia holosericea: An invasive species for bio-char, bio-oil, and biogas production. Bioengineering, 6(2), 1–16.
- 27. Saputro, H., Yosin, K.A., Wijayanto, D.S., Muslim, R., Fitriana, L., Munir, F.A. 2021. A preliminary study of biomass briquettes based on biochar from pyrolysis of durian shell. Annual Engineering and Vocational Education Conference (AEVEC) 2020, 1808(18-19 September 2020).
- 28. Setiawan, B., Syahrizal, I. 2018. Performance of a mixture of sugarcane bagasse charcoal and coconut shell briquettes. Turbo: Journal of Mechanical Engineering Department, 7(1), 57–64. (In Indonesian)
- 29. Sihombing, L., Alpian, A., Mayawati, S., Jumri, J., Supriyati, W., Kehutanan, J., Pertanian, F. 2020. Characterization of charcoal briquettes from acacia wood (Acacia Mangium Willd) as renewable energy. Sustainable Technology Journal, 9(1), 31–38. (In Indonesian)
- 30. Sitogasa, P. S. A., Mohamad Mirwan, Firra Rosariawari, & Azizah M. Rizki. (2022). Analysis of Water and Ash Content in Biomass Briquettes from Durian Fruit Peel Waste and Sawdust. Journal of Research and Technology, 8(2), 279–288.
- 31. Sugiharto, A., & Firdaus, Z. ‘Ilma. (2021). Briquetting of Sugarcane Bagasse and Rice Husk Using Pyrolysis Method as Alternative Energy. Journal of Chemical Engineering Innovation, 6(1), 17–22. (In Indonesian)
- 32. Sunaryo, S., Sutoyo, S., Suyitno, S., Arifin, Z., Kivevele, T., Petrov, A.I. 2023. Characteristics of briquettes from plastic pyrolysis by-products. Mechanical Engineering for Society and Industry, 3(2), 57–65.
- 33. Utchariyajit, K., Panprasert, V., Chayawat, L., Jungthanasombat, W., Janprom, P., Choatchuang, M. 2019. Physical properties and calorific value of briquettes produced from Palmyra palm waste with molasses binder. IOP Conference Series: Materials Science and Engineering, 639(1).
- 34. Wahyuni, H., Aladin, A., Kalla, R., Nouman, M., Ardimas, A., Chowdhury, M.S. 2022. Utilization of industrial flour waste as biobriquette adhesive: Application on pyrolysis biobriquette sawdust red teak wood. International Journal of Hydrological and Environmental for Sustainability, 1(2), 54–69.
- 35. Zeng, K., He, X., Yang, H., Wang, X., Chen, H. 2019. The effect of combined pretreatments on the pyrolysis of corn stalk. Bioresource Technology, 281(1), 309–317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-433b0ae2-f7a6-4ffe-b886-347ab137c4ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.