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Propagation of time harmonic plane waves in an infinite thermo-viscoelastic material with voids has been 
investigated within the context of different theories of thermoelasticity. The equations of motion developed by 
Iesan [1] have been extended to incorporate the Lord-Shulman theory (LST) and Green-Lindsay theory (GLT) of 
thermoelasticity. It has been shown that there exist three coupled dilatational waves and an uncoupled shear wave 
propagating with distinct speeds. The presence of thermal, viscosity and voids parameters is responsible for the 
coupling among dilatational waves. All the existing waves are found to be dispersive and attenuated in nature. 
The phase speeds and attenuation coefficients of propagating waves are computed numerically for a copper 
material and compared under different theories of thermo-elasticity. The expressions of energies carried along 
each wave have also been derived. All the computed numerical results have been depicted through graphs. It is 
found that the influence of CT and GLT is almost same on wave propagation, while LST influences the wave 
propagation differently. 
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1. Introduction  
 
 There are three types of theories on thermo-elasticity generally available in the literature, namely, 
uncoupled, coupled and generalized. The classical uncoupled theory of thermoelasticity is based on two 
phenomena (shortcomings) which are not compatible with physically observed experiments. According to 
the first phenomenon, the energy equation of this theory does not contain any elastic term and according to 
the other phenomenon, the thermal wave propagates with infinite speed (parabolic type). When the elastic 
solid is subjected to a thermal disturbance, the effect is felt in a location far from the source instantaneously, 
which is absurd. The first shortcoming was taken care by Biot [2] by introducing the theory of coupled 
thermoelasticity. The governing equations of this new theory were coupled, but still the theory contained the 
second shortcoming. The shortcoming corresponding to infinite speed of propagation in the uncoupled 
theory of thermoelasticity was investigated by several researchers, e.g. Szekeres [3], Ferkas and Szekeres [4] 
and Chandrasekharaiah [5]. In particular, Szekeres [3] has nicely explained that the Fourier law of heat 
conduction is the most effective model in physics in spite of that it has fundamental errors. These authors 
modified the Fourier law of heat conduction, but showed that it leads to a hyperbolic differential equation 
and the speed of propagation becomes finite. Almost all modifications were in need of at least one relaxation 
time, whose experimental determination was a challenging task and almost impossible [see Szekeres and 
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Szalontay [6]]. Several generalizations of Biot’s theory of thermoelasticity have been developed by the 
researchers (see Hetnarski and Ignaczak [7]). The first generalization was made by Lord and Shulman [8], 
who obtained a wave like heat equation by incorporating a flux rate term into the classical Fourier’s law of 
heat conduction. In this theory, the constitutive relations contain one relaxation time. The second 
generalization is given by the Green and Lindsay theory [9] [GLT] by introducing temperature rate among 
constitutive variables that includes two thermal relaxation times and does not violate the classical law of heat 
conduction when the body under consideration has a centre of symmetry. Green and Naghdi theory [10] [GNT] 
proposed the third generalization of the coupled theory of thermoelasticity, which is the theory of 
thermoelasticity without energy dissipation. In this theory, the classical Fourier law is replaced by heat flux 
rate-temperature gradient relation. This theory admits uncoupled thermoelastic waves. The fourth 
generalization was formulated by Hetnarski and Ignaczak (1996) which is known as a low temperature 
thermoelasticity theory [LTT]. The fifth generalization to thermoelasticity theory was proposed by Tzau [11].        

Goodman and Cowin [12] introduced the continuum theory of granular materials, in which the 
concept of distributed body is introduced. Later, Nunziato and Cowin [13] utilized the idea of distributed 
bodies and developed a nonlinear theory of elastic materials with voids. The linear theory of elastic material 
with voids was presented by Cowin and Nunziato [14]. The basic idea lying under the theory of elastic 
material with voids is that the bulk density of the material is written as a product of two entities: one defining 
the change in void volume fraction and the other defines the density of the matrix material. This 
representation of the bulk density of the material could introduce an additional kinematic variable in the 
theory. Several problems concerning waves and vibrations based on the theories of elastic material with 
voids have been investigated and appeared in the literature. Some notable results have been established by 
Puri and Cowin [15], Iesan [16], Chandrasekhariah [17, 18], Marin [19], Birsan [20], Chirit˘a and Scalia 
[21], Cicco and Diaco [22], Iesan and Nappa [23], Iesan [24], Tomar [25], Ciarletta et al. [26], Ciarletta et al. 
[27], Svanadze [28] and Chirit˘a and Danescu [29]. Iesan [30] extended Cowin and Nunzaito theory to 
incorporate thermal effect and presented the theory of thermoelastic materials with voids. Dhaliwal and 
Wang [31] presented a heat-flux dependent theory of thermoelasticity with voids. Ciarletta and Scalia [32] 
studied uniqueness and reciprocity in linear thermoelasticity of materials with voids. Ciarletta and Scarpetta 
[33] also gave some results on thermo-elasticity for dielectric materials with voids. Iesan [1] further extended 
the theory of thermoelastic material with voids to incorporate the time rate of strain tensor and time rate of 
gradient of void volume fraction and presented the theory of thermo-viscoelastic material with voids. Using 
his theory, Tomar et al. [34] studied the possibility of time harmonic plane wave propagation in an infinite 
thermo-viscoelastic material with voids. They found that four basic waves can propagate in the material with 
distinct speeds consisting of three sets of coupled dilatational waves and a lone shear wave. All the waves are 
found to be dispersive and attenuating. Sharma and Kumar [35] studied one-dimensional plane wave 
propagation in generalized thermo-viscoelastic material with voids. Their generalization of thermoelasticity 
consists of CT and LST. They have also constructed the fundamental solution of the system of differential 
equations in the theory of thermo-viscoelastic medium with voids in case of steady oscillations in terms of 
elementary functions. Bucur et al. [36] studied the behaviour of plane waves and Rayleigh surface waves in 
linear thermoelastic materials with voids. They showed that the transverse wave is not influenced by the 
thermal and void effects at all, while the dilatational waves are coupled with thermal and porous fields. 
Svanadze [28] developed a potential method in the linear theory of viscoelastic materials with voids. 
Bhagwan and Tomar [37] studied reflection and transmission of plane dilatational wave through an interface 
between an elastic solid and a thermo-viscoelastic solid half-space with voids. Chandrasekharaiah [17] 
studied the wave like disturbances as second sound. Recently, D’Apice and Chirit˘a [38] analyzed the 
behaviour of plane harmonic waves in the linear thermo-viscoelastic materials with voids within the context 
of the theory of Iesan [1]. They showed that there may exist five basic waves consisting of three dilatational 
waves and two shear waves. The additional transverse wave exists only under a special circumstance. Both 
the shear waves are uncoupled, damped in time with decay rate depending only on the viscosity coefficients. 
The three dilatational waves are coupled and consist of a predominantly dilatational damped wave of 
KelvinVoigt viscoelasticity, the second is predominantly a wave carrying a change in the void volume 
fraction and the third takes the form of a standing thermal wave whose amplitude decays exponentially with 
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time. Santra et al. [39] studied reflection and refraction due to incident P − and SV − waves at a plane 
interface between two dissimilar half spaces composed of generalized visco-thermoelastic materials. The 
generalization is considered under GL model of thermoelasticity and the effect of thermo-visco elasticity is 
noticed on various amplitude ratios corresponding to reflected and refracted waves at the interface.  

In this paper, we have considered the coupled theory of thermoelasticity and its two generalizations 
due to Lord and Shulman [8] and Green and Lindsay [9]. The main differences between the considered 
generalized theories are as follows: (i) The Lord-Shulman theory modifies only the heat equation of the 
coupled theory, while the Green-Lindsay theory modifies both the constitutive equation and the energy 
equation. Consequently, the Lord-Shulman theory includes only one relaxation time, while the Green-
Lindsay theory involves two relaxation times. (ii) The heat equation of LST depends upon strain-velocity 
and strain-acceleration, whereas in GLT, heat equation depends only on strain-velocity. (iii) In the linearized 
case of GLT, the stresses must depend on temperature for the propagation of heat with finite speed, while in 
LST, this type of dependence on temperature is not necessary. In the present work, we have studied the 
propagation of plane time harmonic waves in an infinite thermo-viscoelastic material with voids within the 
context of generalized theories of thermo-elasticity [LST and GLT]. The relevant equations of motion and 
constitutive relations are modified from those already presented by Iesan [1]. It is found that three coupled 
dilatational waves and a lone shear wave can propagate with distinct speeds in an infinite thermo-viscoelastic 
medium with voids. Thermal and void properties are found to be the reason of appearance of additional 
dilatational waves and also responsible for the coupling among them. Some reduced cases of thermo-visco-
elastic material with voids are discussed. The phase speeds, corresponding attenuation coefficients and 
energy flux carried along each wave under different theories considered are computed numerically and 
presented graphically. Coupling parameters among longitudinal waves have been looked into. Some 
concluding remarks are given in the end of the paper. 
 
2. Constitutive relations and equations 
 

Iesan [1] developed the constitutive relations and field equations for a linear homogeneous isotropic 
thermo-viscoelastic material with voids. Within the context of the Lord-Shulman and Green-Lindsay theories 
of thermoelasticity, the constitutive relations for uniform thermo-viscoelastic material with voids can be 
written as follows 

 

  * * * ,ij rr rr 1 k 2 ij ij ijt e b e b t 2 e 2 e                                         (2.1) 

 

  * *
, , , i i i iH        ,                                                                          (2.2) 

 

  * * ,rr rrg be e m                                                                   (2.3) 
 

  ,0 rr 0 k1e a m mt                                                                     (2.4) 
 

  , , i 0 k1 i t i iQ t Q k       ,                                                                         (2.5)   

 

where λ and μ are well known Lame's parameters; ,  ,  b    and *ξ  are the parameters corresponding to voids 

present in the medium; *,  ,  ,  ,   tm k    and a are the thermal parameters; * * * *,  ,  ,   b   and *γ  are the 

viscoelastic parameters; ijt  is the stress tensor; ije  is the strain tensor; iH  is the equilibrated stress per unit 

area; g is the equilibrated body force; η  is the entropy per unit mass; iQ  is the heat flux vector and 0  is the 

density of the medium. The entity ,  rr i ie u  represents the dilatation, ( , )i iu x t  are the components of 
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displacement vector u ,   is the change in void volume fraction, θ  is the change in temperature from the 

constant ambient temperature 0T  and ij  is the Kronecker delta. A comma (,) before the subscripted index 

denotes the spatial partial derivative, while the dot over a symbol denotes the temporal derivative. Here, 0t  

and 1t  are the relaxation times and the subscript k identifies the different theories of thermo-elasticity. The 

case   k 1  corresponds to LST and the case   k 2 corresponds to GLT. When both 0t  and 1t  vanish, it 
corresponds to CT of thermoelasticity. 

Within the context of generalized theories of thermoelasticity, the equations of motion for thermo-
viscoelastic material with voids can be written as 

 

   , , , ,2
0 i 0 0 j ji 0 i 1 i 0 iu u b u                                                              (2.6) 

 

 , , ,0 ii 0 j j 0 1 0u Г                                                                       (2.7) 
 

 , ,2
0 0 0 i i 2 tc T u Г k                                                                             (2.8)                 

where 

    * * * *,       ,       ,          0 0 0 0b b b
t t t t

   
                

   
, 

 

     * * *,       ,  ,         ,2 2
0 0 1 2 0 0b Г m Г mT

t t t

  
                

  
 

 

    ,        ,        . 0 1k 0 1 2k 1 01 t 1 t c aT
t t

 
        

 
 

 
We define the following non-dimensional quantities as 

 

    ' ' ' ',           ,           ,           i i 0
i i

0 0 0 0

x u c t
x u t T

l l l T


     

 

where 0l   and 0c  denote respectively the standard length and standard velocity. With the help of these non-
dimensional quantities, Eqs (2.6) - (2.8) can be written, after suppressing the primes, as 
 

       * * * *
, , , , , , ,2 2

1 i i i 1 1 j ji 1 1 j ji 1 i 1 i 1 i 2 2k i iu u u u b b T T u                        (2.9) 

 

                       * * * *
, , 2 2 2

1 1 1 j j 1 j j 1 1 1 1 1b u u T m T r                      ,                 (2.10) 
 

                 ,  2 21 1 1 1
1 1k 1k i i 1k 1 1

3 2 3 2

m m
1 n T u k T

t t t

                                   
   (2.11) 

where 

   
* *

* *,    ,     ,   ,   ,  1 1 1 1 12 2 2
0 0 0 0 0 00 0 0 0 0 0

b
b

c l c lc c c

   
        

   
 

 

   
*

*
  

,      ,      ,      ,    ,      ,   0 0 1 t 0 0
1 1 2 1 1 12 2

0 0 0 0 0 0 0 0 00 0 0

T T t k t cb
b k n r

c l c l cc l lc l

  
       
 
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    ,       ,      ,      ,      ,0 0 0 0
1 1 2 3 12 3 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0

T m T l c T c
m

cc T l c c t c c l

 
        

   
 

 

   
* * * *

* * * *T τξ γ ξ α
ξ ,      τ ,      γ ,       ξ ,      α .

ρ c l ρ c lρ c ρ c l ρ c l
0

1 1 1 1 12 2 2 3
0 0 0 0 0 00 0 0 0 0 0 0 0

      

 
In view of the second law of thermodynamics, the Cauchy-Duhem inequality provides the following 

restrictions among various material moduli 
 

  * * * * * * *,      ,       ,      ,       ,      
2

t 0 t
0

1
3 2 0 0 0 k 0 0 T 4 k

T

 
                

 
. 

 
Introduce the scalar potential p and vector potential Ψ  through Helmholtz decomposition theorem as 

 
  ,           .p 0     u                                                            (2.12) 
 
 Here, the potential p corresponds to the dilatational wave potential and the potential Ψ  corresponds 
to the shear wave potential. Plugging (2.12) into Eqs (2.9)-(2.11), we obtain 
 

                         ' ' ' ' ,2 2 2 2 2 2
1 2 3 12c p c c T p c 0                                                      (2.13) 

 

  ' ' ' ,2 2 2 2 2 2
1 9 1 10 11k T c c p c T 0                                                                   (2.14)        

 

   ' ' ' ' ' ,2 2 2 2 2 2 2
4 7 5 6 8c c c p c T c T 0                                                                    (2.15)                     

where 

  ' * * ' * ',       ,        ,2 2 2
1 1 1 1 1 2 1 1 3 1 2 2kc 2 c b b c

t t t t

                            
 

 

  
*

' * ' * ' ' * ',    ,      ,    ,     ,  2 2 2 2 21 1
4 1 1 5 1 1 6 7 1 1 8

1 1 1 1 1

m1 1 1
c c b c c c

r t r t r r t r

                               
 

 

  ' ' ' ' *,      ,       ,       .2 2 2 21 1k 1 1k1 1
9 10 11 1 1k 12 1 1

3 2 3 2

mm
c c c 1 n c

t t t t

     
          
       

 

 
Equation (2.13) yields 
 

  ' ' '  2 2 2 2
1 2 3c p c c T p     ,                                                                (2.16) 

                                                    

  ' 2 2
12c   Ψ Ψ .                                                                           (2.17)  

                                                             
 We note that Eq.(2.17) is uncoupled in the potential Ψ , while Eqs (2.14) to (2.16) are coupled in the 
potentials p, T and  . In the following section, we shall investigate the kind of waves carried along these 
equations. 
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3. Time harmonic waves 
 

For time harmonic wave motion, we shall take the form of various potentials as 
 

       ,,  ,  , ι, exp ω,p T tp T  Ψ  ,                                                (3.1) 

 
where , , andp T   are functions of spatial co-ordinates only; ω  and t are respectively the non-
dimensional frequency and non-dimensional time. The non-dimensional time variable has been defined 

earlier; while the non-dimensional frequency is defined as ' 0

0

l

c


   (later the prime has been dropped). 

Inserting the expressions of ,  p   and T from Eq.(3.1) into Eqs (2.14) - (2.16) and suppressing over bars, we 
obtain 
 

    ,2 2 2 2 2
1 2 3c p c c T 0                                                                   (3.2) 

 

      ,2 2 2 2 2 2 2 2 2
4 7 5 8 6c c c p c c T 0                                            (3.3)    

   

      ,2 2 2 2 2 2 2
1 11 10 1 9k c T c p c 0                                          (3.4)   

where 

   * * *,     ,      ,  2 2 2
1 1 1 1 1 2 1 1 3 1 2 2kc 2 2 c b b c                  

 

       * * *,      ,      ,       ,  2 2 2 21
4 1 1 5 1 1 6 7 1 1

1 1 1 1

m1 1 1
c c b c c

r r r r
             

 

  
*

,      ,       ,       .2 2 2 21k 1k1
8 9 1 10 1 11 1k 1

1 3 2 3 2

1 1
c c m c c n

r

    
                  

 

 
 The quantities T and   are connected with p through the coupling parameters G and F given by 

   
     , , ,T G F p                                                                                (3.5)  

where   

  , ,, ,
4 2 2

2 3 2 3
4 2 2 4 6

1 1 1

A B
G F

A B CZ C

  


     
                                                                (3.6)       

 

   ,      ,     ,2 2 2 2 2 2 2 2
1 1 8 1 4 2 4 10 1 5 3 8 10 1 5A c k c A c c c A c c k c           

       ,     ,2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 4 11 4 8 9 1 6 1 7 2 5 9 10 7 102

1
B k c c c c c c k c B c c c c c

               
 

 

     ,        .2 2 2 2 2 2 2 2 2 2 2 2
3 6 10 5 5 11 1 7 6 9 7 11 113 2

1
B c c c c c C c c c c c c

 
        
  

 

 

 Using Eq.(3.5) in Eq.(3.2), we obtain 
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    ,6 2 4 4 2 6A B C C p 0                                                     (3.7)  

 

where   ,    ,  and    .
2 22 2

2 2 23 32 2
1 1 1 1 1 3 2 1 1 1 3 22 2 2 2

c cc c
A c A B c B A A A C c C B B B        

   
 

 

 The corresponding auxiliary equation of (3.7) is a sixth degree equation, which on notating .2 Z 
can be written as 

 

     .3 2 2 4 6AZ B Z C Z C 0                                                            (3.8) 
                                         

            The solution of Eq.(3.7) can be written in the form  
 

  
3

i
i 1

p p


 ,                                                                         (3.9)   

              
where the potential function  ( , , )ip i 1 2 3  satisfies the following well-known Helmholtz equation  
 

  .
2

2
i2

i

p 0
v

 
    
 

                                                              (3.10) 

 
          This explains the existence of three dilatational waves, say PI, PII and PIII propagating with speeds 1v , 

2v  and 3v , respectively. The speeds  ( , , )iv i 1 2 3  are given by ,2 2 1
i iv Z    where iZ  are the roots of 

Eq.(3.8).  
Next, inserting Ψ  from Eq.(3.1) into Eq.(2.17) and dropping over bars, we have 

                                   

  
2

2
2
4

0
v

 
   
 

  ,            *μ ιωμ4 1 1v   .                            (3.11) 

 

 This represents an equation of shear wave propagating with speed 4v  in a thermo-viscoelastic 

medium with voids. The expression of speed 4v  is non-dimensional and can be written as equal to 

 *

,
0 0

1

c

  


 which matches with the speed of shear wave in a viscoelastic medium. Hence the thermal 

property and presence of voids in the medium are unable to alter the speed of shear wave. Thus, we note that 
there exist four waves consisting of three dilatational waves and one shear wave propagating with distinct 
speeds. It can be seen that the speeds of all these propagating waves are complex valued and depend upon 
the frequency parameter, indicating that the relevant waves are dispersive and attenuated. The speeds of three 
dilatational waves can be determined from Eq.(3.7) by following the same procedure as adopted in Tomar et 
al. [32]. The phase speeds  ;( , , )jV j 1 2 3  and the corresponding attenuation coefficients jA  of all the 

existing waves can be calculated from the formulae 
 

         
   

   
( ) ( ) ( )

 ,          
( ) ( ) ( )

2 2
j j j

j j 2 2
j j j

v v v
V A

v v v

    
 

   
.                              (3.12) 
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 Here, the symbols ( )R  and ( )I  denote respectively the real and imaginary parts. Now, using Eqs 
(3.9) and (3.10) in Eq.(3.5), we obtain     

 

     , , ,i i iT G F p                                                                      (3.13)                     

 
where the quantity iG  represents the coupling between T and ,ip  while the quantity iF  represents the coupling 

between   and ip . Using Eq.(3.10) in Eq.(3.6), these coupling parameters are given by the formulae 
 

  ,            . 
2 2

2 2 i 3 3 i
i i2 4 2 4

1 1 i 1 i 1 1 i 1 i

A B v A B v
G F

A B v C v A B v C v

 
 

   
                                            (3.14)   

                                
 In the following section, we shall analyze the behaviour of these coupling parameters.       
 
4. Behaviour of coupling parameters 

 
As noted above that the three dilatational waves are coupled under three considered theories of 

thermoelasticity. Here, we wish to investigate under what situation these dilatational waves are uncoupled? 
From the expressions of coupling coefficients iG  and iF  it is clear that these coefficients must vanish if the 

expressions of quantities , , 2 2 3A B A  and 3B  vanish. Now the quantities 2A  and 2B  will vanish if the thermal 

parameters are absent from the medium, while the quantities 3A  and 3B  will vanish if both thermal and void 
parameters are absent from the medium. Hence, we can say that the dilatational wave will be uncoupled 
when thermal waves and voids are absent from the medium. In this case only one dilatational wave will 
survive as can be seen in the subsequent section. In other words, we can say that the additional dilatational 
waves appear due to the presence of thermal waves and voids in the medium, which are also responsible for 
the coupling among them. For the three dilatational waves to be coupled, both the coupling coefficients must 
not vanish simultaneously. This is possible when the medium is equipped with thermal waves and voids. The 
behaviour of coupling parameters versus frequency has been investigated numerically for a particular model. 
For non-vanishing values of frequency, we found that coupling parameters never vanish under any of the 
theories of thermoelasticity considered, however at zero frequency, both the coupling parameters vanish as 
can be verified from Eq.(3.14). 
 
5. Special cases 
 

In this section, we shall reduce the speed of the propagating plane waves within the context of 
different theories of thermoelasticity. Recalling that the value  k 1  corresponds to the Lord-Shulman theory, 
and the value   k 2  corresponds to the Green-Lindsay theory, while the value    0 1t t 0   corresponds to the 
coupled theory of thermoelasticity. 
 
5.1. Lord-Shulman theory 
 
 When k  ,1  the symbols given above immediately after Eq.(3.4) shall remain same, except those 
containing Kronecker delta, which reduce to  
 

  ,   ,  ,  .2 2 2 21 1 1 1
3 1 9 10 11 1

3 2 3 2

m m
c c c c n

 
         

   
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 With these values of various symbols, one can find the speeds of various existing waves from 
formulae (3.12) within the context of LST. 
 
5.2. Green-Lindsay theory 
 
 When k=2, the various notations immediately after Eq.(3.4) will remain same, except those 
containing Kronecker delta, which reduce to 
 

  ,  ,  ,  .2 2 2 21 1
3 1 2 9 10 11

3 3

m
c c c c 0


      

 
 

 
 With these values of various symbols, one can find the speeds of various existing waves from 
formulae (3.12) within the context of GLT. 
 
5.3. Coupled theory 
 
 Here, we take    .0 1t t 0   In this case, the affected quantities given after Eq.(3.4) take the form 
 

  ,  ,  ,  ,2 2 2 21 1
3 1 9 10 11

3 3

m
c c c c 0


    

 
 

 
and the speeds of various waves can be calculated as done under other theories of thermoelasticity. To 
reduce the speed of existing waves in a classical elastic medium and in an elastic medium with voids, we 
shall take the relaxation times    .0 1t t 0   With these considerations, one gets the same equations and 
expressions as obtained by Tomar et al. [34] for the corresponding problem. 
 
6. Energy of waves 
 

Following Achenbach [40], the rate of average energy transmission per unit area  *E  at  y 0  is 

given by 
 

    * ( ) ( ).zz z xz x z zE t u t u H Q                                                           (6.1) 
 

 Using the result    ( ) ,
1

f g fg
2

     over bar being the complex conjugate, the above expression 

reduces to 
 

         * .zz z xz x z z
1 1 1

E u ut t H Q
2 2 2

                                                   (6.2) 

 
 This formula will help us to determine the average energy carried along dilatational and shear waves. 
The various potential functions , , p    and Ψ  for plane waves propagating in the x z  plane in a thermo-
viscoelastic medium with voids can be written as 
 
      , , exp ( sin cos ) ,i 0 i 0 0p x z t A k x z t                                                          (6.3) 
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     , , exp ( sin cos ) ,
3

i 0 i 0 0
i 1

T x z t G A k x z t


                                              (6.4) 

 

     , , exp ( sin cos ) ,
3

i 0 i 0 0
i 1

x z t F A k x z t


                                                (6.5) 

 
     , , exp ( sin cos ) ,0 4 0 0x z t k x z t      B                                                  (6.6)   

                                   
the wave normal of the wave makes angle θ0  with the positive direction of the z-axis. The ;   ( , , , )jk j 1 2 3 4  

and ω are the wavenumber and angular frequency, respectively, for the propagating waves; 0A  is a scalar 

amplitude, 0B  is constant vector amplitude, the quantities iG  and iF  represent the coupling parameters 
given earlier in Eq.(3.14). Since the wave speeds are complex in nature, therefore for real valued frequency, 
the wavenumber will be complex. 

Following Borcherd [41], the complex wavenumber jk  written in terms of propagation vector jP  

and attenuation vector jA  of the general type of inhomogeneous plane wave travelling in a dissipative 

medium, is given by 
 

    sin sin ,         ( , , , )j j 0 j 0 jk P A j 1 2 3 4        ,                                          (6.7) 

 
where  γ j  is the angle between the propagation vector jP  and the attenuation vector jA . The modulus of jP  

and jA  are given by 
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R                            (6.9) 

 
 Now, making use of Eqs (6.3) - (6.6) and (2.1) - (2.5) in Eq.(6.2), we obtain the energy flux carried 
along three coupled dilatational waves and a lone shear wave under different theories. It is found that the 
expressions of energy carried along different dilatational waves under CT and GLT remain same, while they 
are different under LST. Since transverse wave is not influenced by thermal property of the medium, 
therefore, its energy expression will be invariant. Energy carried along ,  I IIP P  and IIIP  -waves can be 
obtained by putting index , , l 1 2 3  respectively as: 
 
Under the Coupled Theory and Green-Lindsay Theory 

 

  * * .2 2 2 2 2l
l l l 0 l l t l 0 0 l l 0

k
E 2 k bF T G F k G T T G F A

22 2

                
                    (6.10) 
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Under the Lord-Shulman Theory 
     

   * * .2 2 2 2 2 2l
l l l 0 l l t l 0 0 0 l l 0

k
E 2 k bF T G F k G T t T G F A

22 2

                 
         (6.11) 

 
 And the energy carried along S-wave is given by 

        

  *
3

24
4 0

k
E B

4 2


  .                                                                                  (6.12)                     

 
 It can be seen that the energy fluxes of dilatational waves are functions of frequency, wavenumber, 
temperature field, coupling parameters and elastic properties of the medium. While energy expression of 
transverse wave does not depend on temperature field as was expected before. Moreover, the energy of each 
wave is proportional to the square of the amplitude of corresponding wave. It can be noticed that the energy 
expressions of dilatational waves heavily depend on coupling parameters. 
 
7. Numerical discussion 

 
To understand the behaviour of phase speeds of various existing waves and their corresponding 

energies under different theories of thermoelasticity, we have computed them for a copper material. The 
numerical values of relevant parameters for the copper material have been taken from Mukhopadhyay [42] 
and given in Tab.1. 

 
Table 1. Numerical values of relevant parameters. 
 

Symbol Value Unit Symbol Value Unit 
  . 108 2 10  dyn cm 2  

 . 104 2 10     dyn cm 2  

b  . 100 20 10  dyn cm 2  a .  20 8 10     dyn cm C  2 0 1   

0  8954  gm cm 3  0c  .1 0  cm s 1  

0l  .1 0  cm      . 60 15 10     dyn cm C2 0 1   
*  . 90 45 10  dyn s cm 2  *  .  90 1 10      dyn s C0 1  
*b  . 100 1 10  dyn s cm 2   . 51 5 10  dyn s cm 2  

  . 101 5 10  dyn cm 2  *    . 41 0 10   dyn s  

m  . 60 2 10   dyn cm C2 0 1   
0T  300 K  

*  . 60 01 10     dyn C0 1  *   .  90 2 10    dyn s cm 2  
*  . 61 0 10  dyn s cm 2       . 100 15 10     cm2  

tk  . 30 1 10   dyn s C10 1       . 60 1 10  dyn  

 
 The phase speeds and corresponding attenuation coefficients of three dilatational waves, namely

,  I IIP P  and IIIP  and a lone shear wave are computed and depicted graphically with respect to frequency 
through Figs 1 and 2. Note that in all the figures drawn, the blue, black and red colour curves correspond to 
LST, CT and GLT, respectively. 

 



702                                                                                                                                  S.K.Tomar, N.Goyal and A.Szekers 

 
 

Fig.1. Behaviour of phase speeds of dilatational and shear waves under CT, GLT and LST. 
 
Figure 1a depicts the variation of phase speed of PI-wave versus frequency parameter under three 

theories of thermoelasticity considered. We notice from this figure that the phase speed of IP - wave is 
continuously increasing with frequency parameter under LST, while under CT and GLT, the phase speed of 
this wave, first decreases with an increase of frequency and then increases a little bit faster with a further 
increase of frequency parameter. Figure 1b clearly depicts that the phase speed of IIP -wave is more under 

LST near zero frequency (     )0 6  than CT & GLT, while in the remaining range of frequency, i.e., 

beyond ω  ,6  the phase speed under CT & GLT is higher than that of under LST. Note that in this range, 

the phase speed of IIP - wave under LST bears almost a constant value. The small kink appearing in the 

phase speed curve under LST is due to the presence of relaxation time 0t . It has been noticed that this kink 

goes up and up with an increase of .0t  From Fig.1c, we see that the phase speed of IIIP -wave increases with 
an increase in the frequency parameter. The phase speed of this wave under CT and GLT is almost same. 
The phase speed under LST increases relatively at a much slower rate than that of CT and GLT. Hence, the 
phase speed under LST is much less than that of under CT and GLT. Figure 1d depicts the behaviour of 
phase speed 4v  of shear wave against the frequency parameter. One can observe that there is no change in 
the phase speed of this wave under CT, LST and GLT as was expected before hand. This is because this 
wave is not influenced by the presence of thermal and void properties of the medium. From these figures, 
one can infer that the phase speeds of ,   and  I II IIIP P P -waves are in decreasing order. Moreover, the phase 
speed of shear wave is less than the phase speed of the fastest dilatational wave. This fact is, in general, true 
for most of the deformable elastic solid materials. It has been verified that all the phase speeds become 
almost constant at high frequency values. Thus, they do not tend to unlimited with unlimited increase of the 
frequency parameter.  
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Fig.2. Behaviour of attenuation coefficients of dilatational and shear waves under CT, GLT and LST. 
 
Figures 2a - c depict the variation of attenuation coefficients of all the existing waves under different 

theories of thermoelasticity against the frequency parameter. From Fig.2a, we note that the attenuation of IP
- wave is very small under CT, GLT and LST, which decreases with an increase of the frequency parameter 
under CT and GLT, while under LST, it remains almost constant. The attenuation coefficient of IIP -wave 
increases with an increase of frequency under CT, LST and GLT. The rate of increase under CT and GLT is 
much smaller than that of under LST. But, the magnitude of attenuation coefficient of this wave is 
appreciable in comparison to that of all other waves. The behaviour of attenuation coefficient with frequency 
of IIIP -wave is decreasing very fast under LST than that of under CT and GLT. From Fig.2d, we note that 
the attenuation coefficient of shear wave under LST, CT and GLT decreases monotonically with an increase 
in the frequency parameter. It is worth noting that the shear wave is least attenuating among the attenuations 
of all the other dilatational waves. 

As we have noticed above that the three dilatational waves are coupled under each considered 
theories of thermoelasticity through the coupling coefficients iG  and ,  ( , , )iF i 1 2 3 . Therefore, there are a 

total of six coupling coefficients under CT, GLT and LST, namely, ,  ,  ,  ,  11 12 21 22 31C C C C C  and 32C . The 
behaviour of these coupling coefficients against the frequency parameter has been shown through Figs 3a - f. 
Basically, these coupling coefficients behave alike under CT and GLT, but differently under LST. From 
these figures, it is clear that both of the coupling coefficients cannot be zero simultaneously under considered 
theories of thermo-elasticity. Even at zero frequency, one of the coupling coefficients is non zero. This 
shows that the waves will remain coupled unless thermal and void parameters are absent from the medium. 
As these coupling coefficients depend upon thermal, viscoelastic and void parameters and these parameters 
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have some non-zero values, therefore, they results in non-zero coupling coefficients. Non-vanishing value of 
coupling coefficients is the main cause of three coupled waves under CT, LST and GLT. 

 

 
 

Fig.3. Behaviour of coupling coefficients of dilatational and shear waves under CT, GLT and LST. 
 

Figures 4a - d depict the energy flux carried along different waves under different theories of 
thermoelasticity. For computational purposes, the amplitudes of waves, that is, the quantities 0A  and 0B  
have been taken unity. Firstly, we note that the energy flux of dilatational waves at different values of 
frequency is almost same under CT and GLT. Under LST, the energy flux of IP - wave increases smoothly, 

but slowly, with frequency, while for those of IIP - and IIIP - waves, it increases much faster with frequency. 

Energy flux of IIIP - wave under LST is relatively higher than those of other waves. The behaviour of energy 
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flux of shear wave against frequency is same under GLT, LST and CT, and increases with an increase of the 
frequency parameter. 
 

 
 

Fig.4. Behaviour of energy flux carried along dilatational and shear waves under CT, GLT and LST. 
 

8. Conclusion 
 

A mathematical method is presented to explore the effect of different theories of thermo-elasticity on 
time harmonic wave propagation through a thermo-viscoelastic material with voids. Constitutive equations 
and governing equations of a thermo-viscoelastic material with voids developed by Iesan [1] have been 
extended within the context of LST and GLT theories. For this purpose, two relaxation times have been 
introduced via the Kronecker delta into constitutive relations and equations, which can be easily reduced for 
corresponding equations of CT, LST and GLT. Under each of these theories, it has been found that three 
dilatational waves and a lone shear wave can travel in an infinite thermo-viscoelastic material with voids. 
The dilatational waves are found to be coupled, while the shear wave remains uncoupled. All the waves are 
attenuating and their corresponding phase speeds are dispersive in nature. It has also been shown that thermal 
and void parameters are responsible for the coupling of three dilatational waves. The phase speeds, 
corresponding attenuation coefficients and energy carried along each wave have been presented and 
computed numerically for a particular model. It has been found that phase speeds, attenuation coefficients 
and energy fluxes of all the waves are almost same under GLT and CT. But these are significantly influenced 
under LST. The thermal relaxation time of LST has a prominent effect on IIP -wave. The kink in the phase 

velocity curve of IIP -wave at certain frequency value arises due to the thermal relaxation time. This kink 
goes up with an increase of the thermal relaxation time under LST. The theoretical as well as numerical 
results are promising for different future applications.  
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Nomenclature 
 

 ,  ,  b   , *ξ   voids parameters  

 ,  11 12C C    coupling coefficients for CT corresponding to G and F 

 ,  21 22C C    coupling coefficients for GLT corresponding to G and F 

 ,  31 32C C    coupling coefficients for LST corresponding to G and F 

 * ( , , , )lE l 1 2 3 4    energy ratios 

 ije    strain tensor  

 G, F   coupling parameters 

  g    equilibrated body force  

 iH    equilibrated stress tensor  

 k  w avenumber 

 , 0 0l c   standard length and velocity 

 p, Ψ    dilatational potential and shear wave potential 

 iQ    heat flux vector and  

 t  time 

 ijt    stress tensor  

  0t , 1t    relaxation times 

 ( , )i iu x t    components of displacement vector u   

  ,  ( , , )j jV A j 1 2 3   phase speeds and attenuation coefficients 

  ( , , )iv i 1 2 3   speed of coupled dilatational waves , , I II IIIP P P   

 4v   speed of shear wave 

 ix   spatial coordinate 

 *,  ,  ,  ,  ,  tm k a     thermal parameters  

 δij    Kronecker delta 

 η    entropy per unit mass  

 θ    change in temperature from the constant ambient temperature 0T   

    equilibrated inertia 

 λ, μ  Lame's parameters  
* * * *,  ,  ,   b   , *γ    visco-elastic parameters  

 0    density of the medium 

      change in void volume fraction 

    frequency 
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