PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study, simulation and detection of glucose concentrations through a biochip based on two-dimensional photonic crystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A biochip is made from a two-dimensional photonic crystal waveguide and a rhombus shape that acts as a resonator. This biochip is a sensor that can detect different concentrations of glucose with amounts of 10, 20 and 60% in water. Here, we studied and simulated the concentrations of glucose, which have a refractive index n of 1.3477, 1.3635 and 1.4394, respectively. To identify these quantities, we have proposed a square lattice structure formed by silicon rods with a n = 3.46. With the help of these dielectric rods immersed in the air, it was possible to analyze the detection characteristics. Our results are examined according to COMSOL software by using the PWE method and the finite element method in order to have the PBG and which helped us to create the structure and extract the propagation at resonance, the field norm, the total energy density (TED), the power flow norm (PFN), the transmission and the sensitivity. The concentrations of glucose in water answered yes to the variations for each of the E-field, the TED, the PFN and the sensitivity. These variations are due to the radius r and refractive index n of each concentration used. This structure can help with diabetes self-monitoring.
Słowa kluczowe
Czasopismo
Rocznik
Strony
547--562
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Abdelhafid Boussouf University Center, Mila, Algeria
  • Non-linear Optics and Optical Fiber Team (ONLFO), Research Unit in Optics and Photonics (UROP), Center for the Development of Advanced Technologies (CDTA), University of Setif-1, 19000 Setif, Algeria
  • Laboratoire d’Electronique Avancée (LEA) Electronic Department, Faculty of Technology, Batna 2 University, Algeria
  • Mechanics Research Center (CRM), Chaab Erssas Campus, Mentouri 1 Brothers University, Constantine, Algeria
  • Laboratoire d’Electronique Avancée (LEA) Electronic Department, Faculty of Technology, Batna 2 University, Algeria
Bibliografia
  • [1] ROBINSON S., DHANLAKSMI N., Photonic crystal based biosensor for the detection of glucose concentration in urine, Photonic Sensors 7, 2017: 11-19. https://doi.org/10.1007/s13320-016-0347-3
  • [2] ANSARI J.N., GOWRE S.C., SONTH M.V., GADGAY B., ROY A.S., Photonic nano dielectric crystal cavity with infiltrated biosamples for refractive index sensing application, Integrated Ferroelectrics 213(1), 2021: 93-102. https://doi.org/10.1080/10584587.2020.1859827
  • [3] MALEKI M.J., SOROOSH M., MIR A., Improving the performance of 2-To-4 optical decoders based on photonic crystal structures, Crystals 9(12), 2019: 635. https://doi.org/10.3390/cryst9120635
  • [4] REZAEI M.H., YAVARI M.H., High-sensitive symmetric Fano optical cavity sensor for refractive index detection based on photonic crystal structure, 29th Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2021: 18-22. https://doi.org/10.1109/ICEE52715.2021.9544343
  • [5] HADDADAN F., SOROOSH M., ALAEI-SHEINI N., Designing an electro-optical encoder based on photonic crystals using the graphene–Al2O3 stacks, Applied Optics 59(7), 2020: 2179-2185. https://doi.org/10.1364/AO.386248
  • [6] ZHAO Y., VORA K.H., VOM BÖGEL G., SEIDL K., WEIDENMÜLLER J., Design and simulation of a photonic crystal resonator as a biosensor for point-of-care applications, tm - Technisches Messen 87(7-8), 2020: 470-476. https://doi.org/10.1515/teme-2019-0127
  • [7] KAMRUNNAHAR Q.M., HAIDER F., AONI R.A., MOU J.R., SHIFA S., BEGUM F., ABDUL-RASHID H.A., AHMED R., Plasmonic micro-channel assisted photonic crystal fiber based highly sensitive sensor for multi-analyte detection, Nanomaterials 12(9), 2022: 1444. https://doi.org/10.3390/nano12091444
  • [8] AZIZPOUR M.R.J., SOROOSH M., DALVAND M., SEIFI-KAVIAN Y., All-optical ultra-fast graphene-photonic crystal switch, Crystals 9(9), 2019: 461. https://doi.org/10.3390/cryst9090461
  • [9] SERAJ Z., SOROOSH M., ALAEI-SHEINI N., Ultra-compact ultra-fast 1-bit comparator based on a two-dimensional nonlinear photonic crystal structure, Applied Optics 59(3), 2020: 811-816. https://doi.org/10.1364/AO.374428
  • [10] ZAMANI N.D.M., NAWI M.N., BERHANUDDIN D.D., MAJLIS B.Y., MD. ZAIN A.R., Design of 2D GaN photonic crystal based on hole displacement for L3 cavity, Nanomaterials and Nanotechnology 10, 2020: 1-5. https://doi.org/10.1177/1847980420966887
  • [11] SÜNNER T., STICHEL T., KWON S.-H., SCHLERETH T.W., HÖFLING S., KAMP M., FORCHEL A., Photonic crystal cavity based gas sensor, Applied Physics Letters 92(26), 2008: 261112. https://doi.org/10.1063/1.2955523
  • [12] WU D.K.C., KUHLMEY B.T., EGGLETON B.J., Ultrasensitive photonic crystal fiber refractive index sensor, Optics Letters 34(3), 2009: 322-324. https://doi.org/10.1364/OL.34.000322
  • [13] RADHOUENE M., CHHIPA M. K., NAJJAR M., ROBISON S., SUTHAR B., Novel design of ring resonator based temperature sensor using photonics technology, Photonic Sensors 7, 2017: 311-316. https://doi.org/10.1007/s13320-017-0443-z
  • [14] ARUNKUMAR R., SUGANYA T., ROBINSON S., Design and analysis of photonic crystal elliptical ring resonator based pressure sensor, International Journal of Photonics and Optical Technology 3(1), 2017: 30-33.
  • [15] SREENIVASULU T., KOLLI V.R., ANUSREE K., YADUNATH T.R., BADRINARAYANA T., SRINIVAS T., HEGDE G., MOHAN S., Photonic crystal based force sensor on silicon microcantilever, [In] 2015 IEEE SENSORS, Busan, Korea (South), India, 2015. https://doi.org/10.1109/ICSENS.2015.7370225
  • [16] ROBINSON S., SHANTHI K.V., Analysis of protein concentration based on photonic crystal ring resonator, International Journal of Optics and Photonics (IJOP) 10(2), 2016: 123-130. https://doi.org/ 10.18869/acadpub.ijop.10.2.123
  • [17] GHOUMAZI M., HAMEURLAIN M., Study and simulation of a sensor based on 2D photonic crystals for the detection of aromatic compounds: C6H5 I, C6H5F and C6H5Cl, Annales de Chimie - Science des Matériaux 45(4), 2021: 335-339. https://doi.org/10.18280/acsm.450409
  • [18] GHOUMAZI M., BELLA M., HAMEURLAIN M., Designing of a novel nanophotonic structure based on 2D photonic crystals for the detection of different materials, Mathematical Modelling of Engineering Problems 9(1), 2022: 19-26. https://doi.org/10.18280/mmep.090103
  • [19] KHANI S., HAYATI M., Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer, Scientific Reports 12, 2022: 5246. https://doi.org/10.1038/s41598-022-09213-w
  • [20] LEE M., FAUCHET P.M., Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Optics Express 15(8), 2007: 4530-4535. https://doi.org/10.1364/OE.15.004530
  • [21] DI FALCO A., O’FAOLAIN L., KRAUSS T.F., Chemical sensing in slotted photonic crystal heterostructure cavities, Applied Physics Letters 94(6), 2009: 063503. https://doi.org/10.1063/1.3079671
  • [22] CHEN L., MORGAN K. A., ALZAIDY G. A., HUANG C-C., HO Y-L.D., TAVERNE M.P.C., ZHENG X., REN Z., FENG Z., ZEIMPEKIS I., HEWAK D.W., RARITY J.G., Observation of complete photonic bandgap in low refractive index contrast inverse rod-connected diamond structured chalcogenides, ACS Photonics 6(5), 2019: 1248-1254. https://doi.org/10.1021/acsphotonics.9b00184
  • [23] SCHWARTZ B.T., PIESTUN R., Dynamic properties of photonic crystals and their effective refractive index, Journal of the Optical Society of America B 22(9), 2005: 2018-2026. https://doi.org/10.1364/JOSAB.22.002018
  • [24] SOLTANI O., FRANCOEUR S., KANZARI M., Superconductor-based quaternary photonic crystals for high sensitivity temperature sensing, Chinese Journal of Physics 77, 2022: 176-188. https://doi.org/10.1016/j.cjph.2022.02.007
  • [25] AGARWAL A., MUDGAL N., SAHU S., SINGH G., BHATNAGAR S.K., Design of a nanocavity photonic crystal structure for biosensing application, [In] Tiwari M., Maddila R.K., Garg A.K., Kumar A., Yupapin P. [Eds], Optical and Wireless Technologies, Lecture Notes in Electrical Engineering, Vol. 771, Springer, Singapore, 2022: 321-330.
  • [26] CHOU CHAO C.-T., CHOU CHAU Y.-F., CHEN S.-H., HUANG H.J., LIM C.M., KOOH M.R.R., THOTAGAMUGE R., CHIANG H-P., Ultrahigh sensitivity of a plasmonic pressure sensor with a compact size, Nanomaterials 11(11), 2021: 3147. https://doi.org/10.3390/nano11113147
  • [27] TROIA B., PAOLICELLI A., DE LEONARDIS F., PASSARO V.M.N., Photonic crystals for optical sensing: A review, [In] Advances in Photonic Crystals, IntechOpen, 2013.
  • [28] PETROVA I., KONOPSKY V., NABIEV I., SUKHANOVA A., Label-free flow multiplex biosensing via photonic crystal surface mode detection, Scientific Reports 9, 2019: 8745. https://doi.org/10.1038/s41598-019-45166-3
  • [29] VISWANATHAN B., RAJESH A., JEYALAKSHMI C., ABINAYA S., DEEPIKA J., DHARINI D., GAJASREE S., Design of 6-channel optical demultiplexer/coupler using photonic crystal for IFoF in 5G networks, Optical and Quantum Electronics 53, 2021: 444. https://doi.org/10.1007/s11082-021-03097-2
  • [30] SHIRDELY M., MANSOURI-BIRJANDI M.A., Photonic crystal all-optical switch based on a nonlinear cavity, Optik 127(8), 2016: 3955-3958. https://doi.org/10.1016/j.ijleo.2016.01.114
  • [31] MANDAL S., BOSE M.K., BOSE C., Generalized scheme for coupling length reduction in photonic crystal based directional coupler designed with square lattice of dielectric rods in air background, Optik 198, 2019: 163273. https://doi.org/10.1016/j.ijleo.2019.163273
  • [32] JINDAL P., GEETANJALI, GUPTA I., KAUR H.J., Photonic crystal power splitter with linear waveguides in a low dielectric-index material, 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2021: 312-319. https://doi.org/10.1109/ICECA52323.2021.9675986
  • [33] CABALLERO L.P., POVINELLI M. L., RAMIREZ J.C., GUIMARÃES P.S.S., VILELA NETO O.P., Photonic crystal integrated logic gates and circuits, Optics Express 30(2), 2022: 1976-1993. https://doi.org/10.1364/OE.444714
  • [34] WANG J., HUANGFU L., CHEN H., Design of compact polarization-insensitive multimode interference triplexer, Journal of Modern Optics 68(9), 2021: 496-506. https://doi.org/10.1080/09500340.2021.1924887
  • [35] HODSON T., MIAO B., CHEN C., SHARKAWY A., PRATHER D., Silicon based photonic crystal electro-optic modulator utilizing the plasma dispersion effect, [In] 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 2007: 1-2. https://doi.org/10.1109/CLEO.2007.4452748
  • [36] BAZIAN M., Photonic crystal add–drop filter: A review on principles and applications, Photonic Network Communications 41, 2021: 57-77. https://doi.org/10.1007/s11107-020-00907-7
  • [37] SEIFOURI M., FALLAHI V., OLYAEE S., Ultra-high-Q optical filter based on photonic crystal ring resonator, Photonic Network Communications 35, 2018: 225–230. https://doi.org/10.1007/s11107-017-0732-x
  • [38] GHOUMAZI M., HOCINI A., Photonic crystal based bio-sensor detection in nanophotonic structure using FEM method, International Journal of Sensors, Wireless Communications and Control 11(2), 2021: 216-224. https://doi.org/10.2174/2210327910666191218125109
  • [39] BAKER J.E., SRIRAM R., MILLER B.L., Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing, Lab Chip 15(4), 2015: 971-990. https://doi.org/10.1039/C4LC01208A
  • [40] PITRUZZELLO G., KRAUSS T.F., Photonic crystal resonances for sensing and imaging, Journal of Optics 20(7), 2018: 073004. https://doi.org/10.1088/2040-8986/aac75b
  • [41] FU H.-W., ZHAO H., QIAO X.-G., LI Y., ZHAO D.-Z., YONG Z., Study on a novel photonic crystal temperature sensor, Optoelectronics Letters 7, 2011: 419-422. https://doi.org/10.1007/s11801-011-0065-4
  • [42] SINIBALDI A., Cancer biomarker detection with photonic crystals-based biosensors: An overview, Journal of Lightwave Technology 39(12), 2021: 3871-3881.
  • [43] OLYAEE S., MOHSENIRAD H., MOHEBZADEH-BAHABADY A., Photonic crystal chemical/biochemical sensors, [In] Progresses in Chemical Sensor, IntechOpen, London, United Kingdom, 2016.
  • [44] RODRIGUEZ-ESQUERRE V.F., KOSHIBA M., HERNANDEZ-FIGUEROA H.E., Finite-element analysis of photonic crystal cavities: time and frequency domains, Journal of Lightwave Technology 23(3), 2005: 1514-1521.
  • [45] XIAO S., SHEN L., HE S., A plane-wave expansion method based on the effective medium theory for calculating the band structure of a two-dimensional photonic crystal, Physics Letters A 313(1-2), 2003: 132-138. https://doi.org/10.1016/S0375-9601(03)00690-X
  • [46] ANDONEGUI I., GARCIA-ADEVA A.J., The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities, Optics Express 21(4), 2013: 4072-4092. https://doi.org/10.1364/OE.21.004072
  • [47] PAINTER O., VUČKOVIĆ J., SCHERER A., Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, Journal of the Optical Society of America B 16(2), 1999: 275-285. https://doi.org/10.1364/JOSAB.16.000275
  • [48] CHUPRADIT S., ASHFAQ S., BOKOV D., SUKSATAN W., JALIL A.T., ALANAZI A.M., SILLANPAA M., Ultra-sensitive biosensor with simultaneous detection (of cancer and diabetes) and analysis of deformation effects on dielectric rods in optical microstructure, Coatings 11(12), 2021: 1564. https://doi.org/10.3390/coatings11121564
  • [49] ROSTAMIAN A., MADADI-KANDJANI E., DALIR H., SORGER V.J., CHEN R.T., Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared, Nanophotonics 10(6), 2021: 1675-1682. https://doi.org/10.1515/nanoph-2020-0576
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4332445e-2b71-4a69-a4e0-7c60de4cc8fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.