PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of LNG processes to determine the effect of end flash systems on efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the simulation, exergy analysis and comparison of two commonly applied liquefaction of technologies natural gas, namely: propane precooled mixed refrigerant process (C3MR) and dual mixed refrigerant process (DMR) alongside two modifications of each employing end flash systems. The C3MR and DMR process schemes were simulated using the commercial software to mathematically model chemical processes. These schemes were then analysed using energy and exergy calculations to determine their performances. The exergy efficiency for the C3MR processes without end flash system, with simple end flash system and extended end flash system were evaluated as 29%, 31%, and 33%, respectively, while the exergy efficiency for the DMR processes without end flash system, with simple end flash system, and extended end flash system were evaluated as 26%, 25.5%, and 30%, respectively. The results achieved show that the extended end flash system versions of the schemes are most efficient. Furthermore, the exergy analysis depicted that the major equipment that must be enhanced in order to improve the cycle exergy efficiencies are the compressors, heat exchangers, and coolers.
Słowa kluczowe
Rocznik
Strony
35--63
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • Department of Chemical Engineering, Covenant University, Km. 10 Idiroko Road, P.M.B. 1023, Canaan Land, Ota, Ogun State, Nigeria
  • Department of Chemical Engineering, Covenant University, Km. 10 Idiroko Road, P.M.B. 1023, Canaan Land, Ota, Ogun State, Nigeria
  • Department of Chemical Engineering, Covenant University, Km. 10 Idiroko Road, P.M.B. 1023, Canaan Land, Ota, Ogun State, Nigeria
Bibliografia
  • [1] U.S. Energy Infomation Administration. International Energy Outlook (IEO) 2016. Retrieved from: https://www.eia.gov/outlooks/ieo/world.cfm 2016 (accessed May 11, 2016)
  • [2] Woudstra N., Stelt T.V.: Exergy analysis of combustion systems. ECOS 2003, Copenhagen, June 30 – July 2, 2(2003), 835 – 842.
  • [3] Gundersen T.: An Introduction to the Concept of Exergy and Energy Quality. Retrieved from Norwegian University of Science and Technology: http://www.ivt.ntnu.no/ept/fag/tep4120/innhold/Exergy%20Light%20Version%203.pdf (accessed March 2019).
  • [4] Dincer I., Cengel Y.A.: Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 3(2001), 3, 116-149.
  • [5] Usama M., Sherine A., Shuhaimi M.: Technology review of natural gas liquefaction processes. J. Appl. Sci. 11(2011), 21, 3541-3546
  • [6] Hollingworth M., May E., Viglione S., Titley M.: Efficiency in LNG Processing through Exergy Analysis. CEED Seminar Proc. 2015, 25–30.
  • [7] Tsatsaronis G., Morosuk T.: Advanced exergetic analysis of a refrigeration system for liquefaction of natural gas. Int. J. Energ. Environ. Eng. 1(2010), 1, 1–17.
  • [8] Vatani A., Mehrpooya M., Palizdar A.: Advanced exergetic analysis of five natural gas liquefaction process. Energ. Convers. Manage. 78(2014), 720-737,
  • [9] Hamut H.S., Dincer I., Naterer G.F.: Exergoeconomic and Enviroeconomic Analyses of Hybrid Electric Vehicle Thermal Management Systems. In: Progress in Sustainable Energy Technologies Vol II, (2014).
  • [10] Omar N.B., Morosuk T., Tsatsaronis G.: A Novel Mixed-Refrigerant Process for the Liquefaction of Natural Gas. Proc. ECOS 2014, 27th Int. Conf. Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. Turku 2014.
  • [11] Mafi M., Mousavi S.M., Amidpour M.: Exergy analysis of multistage cascade low temperature refrigeration systems used in olefin plants. Int. J. Refrig. 32(2009), 279–294.
  • [12] Konoglu M.: Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction. Int. J. Energy Res. 26(2000), 763–774.
  • [13] Alabdulkarem A., Mortazavi A., Hwang Y., Radermacher R., Rogers P.: Optimization of propane pre-cooled mixed refrigerant LNG plant. Appl. Thermal Eng. 31(2011), 6, 1091–1098.
  • [14] Remeljej C.W., Hoadley A.F.: An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes. Energy 31(2004), 12, 2005–2019.
  • [15] Alamu O.B.: Simulation, Optimization and Exergy Analysis of LNG Processes in Nigeria LNG Plant. Masters’ thesis, Obafemi Awolowo University, Ile-Ife, (2010).
  • [16] IGU.: International Gas Union Report. IGU: http://members.igu.org/old/gasknowhow/publications/igu-publications/publications/mag/apr07/p101-125.pdf, (accessed 22 July 2017).
  • [17] Dam W., Ho S.M.: Engineering design challenges for the Sakhalin LNG Project. Paper GPSA Conf., San Antonio 2001.
  • [18] Husnil Y.A., Choi B., Park J., Andika R., Lee M.: Optimizing Control Structure for Dual Mixed Refrigerant Process M.: Retrieved from International Atomic Energy Agency (IAEA): http://folk.ntnu.no/skoge/prost/proceedings/adconip2014/pdf/SUBS41TO60/0045/0045_FI.pdf,2014 (accessed March 2019).
  • [19] Helgestad D.-E.: Modelling and optimization of the C3MR process for liquefaction of natural gas. TKP 4550 Process Systems Engineering – Specialization Project Fall, 2009.
  • [20] Abdollahi-Demneh F., Moosavian M.A., Omidkhah M.R., Bahmanyar H.: Calculating exergy in flowsheeting simulators: A Hysys implementation. Energy 36(2011), 8, 5320e7.
  • [21] Szargut J., Morris D.R., Steward F.R.: Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. New York: Hemisphere Publishing Corporation, 1988.
  • [22] Ghannadzadeh A., Thery R., Baudouin O., Baudet P., Floquet P., et al.: General methodology for exergy balance in ProSimPlus process simulator. Energy, 44(2012), 38–59.
  • [23] Clementino P., Asep H.S., Sutrasno K.: Thermodynamic analysis for liquefaction of natural gas using the C3-MR refrigeration process. Int. J. Chemical Eng. Applications 5(2014), 1, 17–22.
  • [24] Bataineh K., Khaleel B.A.: Thermodynamic analysis of a combined cycle power plant located in Jordan: A case study. Arch. Thermodyn. 41(2020), 1, 95–123.doi:10.24425/ather.2020.132951
  • [25] Osuolale F.N., Anozie A.N.: Thermodynamic assessment of crude distillation units: case studies of Nigeria refineries. Arch. Thermodyn. 40(2019), 4, 83–102. doi:10.24425/ather.2019.131429
  • [26] Zie¸bik A.: Thermodynamical motivation of the Polish energy policy. Arch. Thermodyn. 33(2012), 4, 3–21. doi:10.2478/v10173-012-0025-9
  • [27] Okoji A.I., Babatunde D.E., Anozie A.N., Omoleye J.A.: Thermodynamic analysis of raw mill in cement industry using aspen plus simulator. IOP Conf. Ser.: Materials Science and Engineering 413(2018), 1, 012048.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43308839-e04e-43f2-b583-e6b191a85796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.