PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of alloying systems on the lattice parameters of nickel-based superalloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The work aims to establish the relationship between the chemical composition, mechanical properties and dimensional mismatch of crystal lattices of heat-resistant nickel alloys. Design/methodology/approach: The results of experimental and calculated data formed based on experimental and taken from open sources results are presented. The XRD method used Bragg-Brentano determined the phase composition, focusing on a RIGAKU MINIFLEX 600 diffractometer (CoKα-radiation). After heat treatment, strength characteristics were determined on cylindrical samples with a working part (diameter 5 mm, length 25 mm). Testing of the alloy for short-term strength was carried out on samples at a temperature of 20°C on UME-10TM and GCM-20 tensile machines. Alloy tests for long-term strength were carried out on similar samples at a temperature of 1000°C on AIMA-5-2 and ZTZ 3/3 machines by uniaxial stretching under a constant load based on 100 hours. Findings: It has been established that with an increase in the value of the mismatch of crystal lattices, the strength of the alloys decreases due to significant internal stresses. It was revealed that for alloys of equiaxed and directional crystallisation, an extremum is observed at a value of 1.5 ... 1.6 K; this is associated with a decrease in the number of elements in the ϒ-solid solution. Research limitations/implications: An essential problem is predicting the structure and properties of heat-resistant alloys without or with a minimum number of experiments. The results of comparative tests of the XDR method and calculated data are analysed. Practical implications: The obtained dependences can be used both for designing new heat-resistant alloys and for improving the compositions of industrial alloys. Originality/value: The value of this work lies in the fact that the dependences of the influence of alloying elements on the mechanical properties and the dimensional mismatch of crystal lattices were obtained, which made it possible to determine the properties without conducting experiments. It has been established that changes in the course of the relationship closely correlate with the processes taking place in the structure of alloys.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • National University "Zaporizhzhia Polytechnic", 64 Zhukovskogo str., 69063, Zaporizhzhia, Ukraine
  • National University "Zaporizhzhia Polytechnic", 64 Zhukovskogo str., 69063, Zaporizhzhia, Ukraine
autor
  • National University "Zaporizhzhia Polytechnic", 64 Zhukovskogo str., 69063, Zaporizhzhia, Ukraine
autor
  • National University "Zaporizhzhia Polytechnic", 64 Zhukovskogo str., 69063, Zaporizhzhia, Ukraine
Bibliografia
  • 1. A. Balyts'kyi, Hydrogen assisted crack initiation and propagation in nickel-cobalt heat resistant superalloys, Procedia Structural Integrity 16 (2019) 134-140. DOI: https://doi.org/10.1016/j.prostr.2019.07.032
  • 2. N. Das, Advances in nickel-based cast superalloys, Transactions of the Indian Institute of Metals 63 (2010) 265-274. DOI: https://doi.org/10.1007/s12666-010-0036-7
  • 3. K. Mukai, Z. Li, K. C. Mills, Prediction of the densities of liquid Ni-based superalloys, Metallurgical and Materials Transactions B 36 (2005) 255-262. DOI: https://doi.org/10.1007/s11663-005-0027-y
  • 4. O.A Glotka, V.Y. Olshanetskii, Mathematical forecasting composition of secondary carbides in the single-crystal superalloys, Archives of Materials Science and Engineering 111/1 (2021) 34-41. DOI: https://doi.org/10.5604/01.3001.0015.5563
  • 5. Z. Li, K. C. Mills, The effect of γ′ content on the densities of Ni-based superalloys, Metallurgical and Materials Transactions B 37 (2006) 781-790. DOI: https://doi.org/10.1007/s11663-006-0060-5
  • 6. O.N. Senkov, D.W. Mahaffey, S.L. Semiatin, C. Woodward, Inertia Friction Welding of Dissimilar Superalloys Mar-M247 and LSHR, Metallurgical and Materials Transactions A 45 (2014) 5545-5561. DOI: https://doi.org/10.1007/s11661-014-2512-x
  • 7. J. Zhang, R.F. Singer, Effect of Zr and B on castability of Ni-based superalloy IN792, Metallurgical and Materials Transactions A 35 (2004) 1337-1342. DOI: https://doi.org/10.1007/s11661-004-0308-0
  • 8. Y.H. Kvasnytska, L.М. Ivaskevych, О.І. Balytskyi, І.І. Maksyuta, H.P. Myalnitsa, High-Temperature Salt Corrosion of a Heat-Resistant Nickel Alloy, Materials Science 56 (2020) 432-440. DOI: https://doi.org/10.1007/s11003-020-00447-5
  • 9. R. Mitchell, M. Preuss, Inter-Relationships between Composition, γ′ Morphology, Hardness, and γ-γ′ Mismatch in Advanced Polycrystalline Nickel-Base Superalloys during Aging at 800°C, Metallurgical and Materials Transactions A 38 (2007) 615-627. DOI: https://doi.org/10.1007/s11661-007-9089-6
  • 10. O.A. Balitskii, V.O. Kolesnikov, A.I. Balitskii, J.J. Eliasz, M.R. Havrylyuk, Hydrogen effect on the high-nickel surface steel properties during machining and wear with lubricants, Archives of Materials Science and Engineering 104/2 (2020) 49-57. DOI: https://doi.org/10.5604/01.3001.0014.4894
  • 11. S. Singh Nain, R. Sai, P. Sihag, S. Vambol, V. Vambol, Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy, Archives of Materials Science and Engineering 95/1 (2019) 12-19. DOI: https://doi.org/10.5604/01.3001.0013.1422
  • 12. S.W. Kang, S.J. Heo, J.H. Yoo, J.H. Kang, Hardness prediction of a cold rolled Nimonic 80A exhaust valve spindle, Journal of Achievements in Materials and Manufacturing Engineering 94/1-2 (2019) 13-21. DOI: https://doi.org/10.5604/01.3001.0013.5117
  • 13. MA. Charpagne, T. Billot. J.M. Franchet, N. Bozzolo, Heteroepitaxial recrystallization, a new recrystallization Mechanism in Sub-Solvus Forged γ-γ’ Nickel-Based Superalloys with Low Lattice Mismatch, in: E.A. Holm, S. Farjami, P. Manohar, G.S. Rohrer, A.D. Rollett, D. Srolovitz, H. Weiland (eds), Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016), Springer, Cham, 2016, 259-264. DOI: https://doi.org/10.1007/978-3-319-48770-0_38
  • 14. A.E. Kochmańska, Aluminide coatings on Inconel 617 obtained by slurry method with inorganic binder, Journal of Achievements in Materials and Manufacturing Engineering 85/2 (2017) 49-55. DOI: https://doi.org/10.5604/01.3001.0010.8034
  • 15. N. Makuch, P. Dziarski, M. Kulka, The effect of laser treatment parameters on temperature distribution and thickness of laser-alloyed layers produced on Nimonic 80A-alloy, Journal of Achievements in Materials and Manufacturing Engineering 83/2 (2017) 67-78. DOI: https://doi.org/10.5604/01.3001.0010.7034
  • 16. Z. Ma, Y.-L. Pei, L. Luo, L. Qin, S.-S. Li, S.-K. Gong, Partitioning behavior and lattice misfit of γ/γ′ phases in Ni-based superalloys with different Mo additions, Rare Metals 40 (2021) 920-927. DOI: https://doi.org/10.1007/s12598-019-01309-z
  • 17. G. Mi, Y. Liu, S. Tian, Z. Li, Microstructure and mechanical properties of spray deposited Ni-based superalloys, Journal of Wuhan University of Technology-Materials Science Edition 24 (2009) 796-799. DOI: https://doi.org/10.1007/s11595-009-5796-8
  • 18. Z. Li, K.C. Mills, M. McLean, K. Mukai, Measurement of the density and surface tension of Ni-based superalloys in the liquid and mushy states, Metallurgical and Materials Transactions B 36 (2005) 247-254. DOI: https://doi.org/10.1007/s11663-005-0026-z
  • 19. A.I. Balyts’kyi, Y.H. Kvasnyts’ka, L.M. Ivas’kevich, H.P. Myal’nitsa, Corrosion- and Hydrogen-Resistance of Heat-Resistant Blade Nickel-Cobalt Alloys, Materials Science 54 (2018) 230-239. DOI: https://doi.org/10.1007/s11003-018-0178-z
  • 20. A.I. Balitskii, L.M. Ivaskevich, Assessment of hydrogen embrittlement in high-alloy Chromium-Nickel steels and alloys in hydrogen at high pressures and temperatures, Strength of Materials 50 (2018) 880-887. DOI: https://doi.org/10.1007/s11223-019-00035-2
  • 21. P. Dziarski, N. Makuch, M. Kulka, Influence of gas boriding on corrosion resistance of Inconel 600-alloy, Archives of Materials Science and Engineering 84/1 (2019) 23-33. DOI: https://doi.org/10.5604/01.3001.0010.3028
  • 22. A.A. Glotka, V.E. Ol'shanetskii, Prediction thermo-physical characteristics heat-resistant nickel alloys directional crystallization, Acta Metallurgica Slovaca 27/2 (2021) 68-71. DOI: https://doi.org/10.36547/ams.27.2.813
  • 23. A.A. Glotka, A.N. Moroz, Comparison of the Effects of Carbides and Nonmetallic Inclusions on Formation of Fatigue Microcracks in Steels, Metal Science and Heat Treatment 61/7-8 (2019) 521-524. DOI: https://doi.org/10.1007/s11041-019-00456-5
  • 24. О.А. Glotka, Distribution of Alloying Elements in Carbides of Refractory Nickel Alloys under the Conditions of Equiaxial Crystallization, Materials Science 56/5 (2021) 714-721. DOI: https://doi.org/10.1007/s11003-021-00487-5
  • 25. S.V. Haiduk, Evaluation of the effect of tantalum in the zmi-3u alloy on the resistance of individual phases to accelerated corrosion penetration, New Materials and Technologies in Metallurgy and Mechanical Engineering 1 (2010) 39-43 (in Russian).
  • 26. A.D. Koval, S.B. Belykov, A.H. Andryenko, Passport for heat-resistant corrosion-resistant nickel alloy ZMI-3U (KhN64VMKIuT), Zaporozhe, 1995 (in Russian).
  • 27. Datasheet, UDIMET 500: Heat Resistant Alloy, Alloy Digest 10/12 (1961) Ni-28. DOI: https://doi.org/10.31399/asm.ad.ni0028
  • 28. A.A. Glotka, V.E. Ol'shanetskii, Control of the processes of phase formation of carbide components in nickel-based superalloys, Acta Metallurgica Slovaca 28/2 (2022) 101-105. DOI: https://doi.org/10.36547/ams.28.2.1506
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-432f3519-d189-4e66-9710-c59660ad26b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.