PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing Rhizobia for Natural and Anthropogenic Saline Soils and Subsoils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The area of naturally saline lands in Russia is approximately 30 million hectares. Currently, the growth of anthropogenic saline areas is associated with the extraction of minerals (agricultural ore) and the formation of drilling pits when drilling wells for the exploration and extraction of hydrocarbons. The number of drilling pits with high salt content in the Khanty-Mansi Autonomous Okrug is about 3 thousand. About the same number of them is found in the Yamalo-Nenets Autonomous Okrug. In the south of the Tyumen region, their number is increasing in the Uvat district. Reclamation of these areas includes the technical and biological phases of reclamation. The biological stage involves the use of phytomeliorant crops. Inclusion of the legume component in phytomeliorants implies its joint use with a preparation of active strain of nodule bacteria. The aim of the research was to identify the most salt-tolerant strain of lupine nodule bacteria under different chemistry and degree of salinity of the environment. In order to test lupine rhizobia for salt tolerance and salinity chemistry, laboratory experiments were set up in petri dishes. Lupine rhizobia strains 363a, 367a, and 375a were taken directly from the rhizotorphin preparations, and the degree of dilution was brought to a certain titer corresponding to about 80 colonies per Petri dish. The presented results of the experiments showed that the colonies of lupine rhizobia react extremely negatively to the concentration of salts in the nutrient medium of 0.3% or higher. This is true for both neutral and sodium salinity. Out of the three strains of rhizobia studied, sample 367a was the most salt tolerant. Strains 363a and 375a were less resistant to salinization. For the first time, strains of lupine rhizobia were tested for salt tolerance in relation to different chemistry and degree of salinity identical to anthropogenic soils and saline soils.
Rocznik
Strony
139--142
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Industrial University of Tyumen, Volodarskogo 38, 652000 Tyumen, Russia
  • Industrial University of Tyumen, Volodarskogo 38, 652000 Tyumen, Russia
  • Industrial University of Tyumen, Volodarskogo 38, 652000 Tyumen, Russia
Bibliografia
  • 1. Laktionov Yu.V., Kosulnikov Yu.V., Dudnikova D.V., Yakhno V.V., Kozhemyakov A.P. 2019. Assessment of resistance of soybean nodule bacteria strains to recommended chemical fungicides. Grain farming in Russia, 1 (61), 62–67.
  • 2. Laktionov Yu.V., Yakhno V.V., Kozhemyakov A.P. 2018. New approaches in cultivation and application of microbiological preparations for crop production. Materials of the III International Scientific Conference, 38–39.
  • 3. Muntyan V.S., Akinina Yu.N., Simarov B.V., Rumyantseva M.L. 2018. Analysis of structural polymorphism of the puta gene involved in proline metabolism in natural strains of Sinorhizobium meliloti. Current biotechnology, 3(26), 429–431.
  • 4. Patent for invention RU 2593714 C1. Strain of nodule bacteria of alfalfa Sinorhizobium meliloti – symbiotic nitrogen fixator for normal and saline soils. 2015.
  • 5. Petukhova V.S., Skipin L.N., Bogdanova O.G. 2017. Improvement of methods of drilling mud recultivation.
  • 6. Posypanov, G.S. 1991. Methods of studying the biological fixation of air nitrogen.
  • 7. Rumyantseva M.L., Muntyan V.S., Cherkasova M.E., Saksaganskaya A.S., Andronov E.E., Simarov B.V. 2018. Genomic islands in sinorhizobium meliloti RM1021, nitrogen-fixing symbiont of alfalfa. Russian Journal of Genetics, 54 (7), 759–769.
  • 8. Rumyantseva M.L., Vladimirova M.E., Muntyan V.S., Stepanova G.V., Saksaganskaya A.S., Kozhemyakov A.P., Orlova A.G., Becker A., Simarov B.V. 2019. Highly effective strains of nodule bacteria of alfalfa (Medicago Varia L.): molecular-genetic characteristics and use in conjugated breeding. Agricultural biology, 54 (6), 1306–1323.
  • 9. Saksaganskaya A.S., Kozlova A.P., Muntyan V.S., Rumyantseva M.L. 2017. Dynamics of nodule formation on alfalfa roots by Sinorhizobium meliloti strains of different NOD genotypes. Collection of articles based on the materials of the V International Scientific and Practical Conference, 50–56.
  • 10. Saksaganskaya A.S. Muntyan V.S., Rumyantseva M.L. 2016. Polymorphism of nodule bacteria Sinorhizobium meliloti determining virulence and stress resistance. In book: biology – Science of the XXI century, 44–45.
  • 11. Skipin L.N. 2000. Solontsy Sibiri: ecological aspects of development.
  • 12. Skipin L.N., Petukhova V.S., Perfiliev N.V., Khramtsov N.V. 2014. Parameters of vital activity of nodule bacteria under changes in edaphic factors. Bulletin of KrasGAU, 6 (93), 103–108.
  • 13. Yakobi L.M., Zheleznyakov S.V., Smetanin R.V., Lebedeva V.K., Kozhemyakov A.P. 2019. Investigation of the induced mutant of alfalfa hop (Medicagolupulinal. SUBSP. Vulgariskoch) on symbiotic signs in the formation of mycorrhizal symbiosis. Collection of theses of the International Congress.
  • 14. Yakobi L.M., Zheleznyakov S.V., Kozhemyakov A.P. 2018. Morphological description of non-effective arbuscular mycorrhiza developed by plant mutant (Medicago lupulina L. Subsp. Vulgaris koch.) in assoсiation with rhizophagus irregularis. In the book: Materials of the International Scientific Conference.
  • 15. Yezhov G.I. 1981. Guide to practical tasks in agricultural microbiology.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-432e1c0f-1434-488a-8c4f-ff6830394746
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.