PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assuming that the thermo-elastic creep response of the material is governed by Norton’s law and material properties, except Poisson’s ratio, are considered as a function of the radius of the spherical vessel, an analytical solution is presented for calculation of stresses and displacements of axisymmetric thick-walled spherical pressure vessels made of functionally graded materials. This analytical solution could be used to study the time and temperature dependence of stresses in spherical vessels made of functionally graded materials. Creep stresses and displacements are plotted against dimensionless radius and time for different values of the powers of the material properties.
Rocznik
Strony
1053--1065
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Mechanical Engineering Department, Yasouj University, Yasouj, Iran
autor
  • Mechanical Engineering Department, Yasouj University, Yasouj, Iran
Bibliografia
  • 1. Alashti R.A., Khorsand M., Tarahhomi M.H., 2013, Three-dimensional asymmetric thermoelastic analysis of a functionally graded rotating cylindrical shell, Journal of Theoretical and Applied Mechanics, 51, 1, 143-158
  • 2. Aleayoub S.M.A., Loghman A., 2010, Creep stress redistribution analysis of thick-walled FGM spheres, Journal of Solid Mechanics, 2, 10, 115-128
  • 3. Arya V.K., Debnath K.K, Bhatnagar N.S., 1980, The spherical vessel with anisotropic creep properties considering large strains, International Journal of Non-Linear Mechanics, 15, 185-193
  • 4. Bhatnagar N.S., Arya V.K., 1975, Creep of thick-walled spherical vessels under internal pressure considering large strains, Indian Journal of Pure and Applied Mathematics, 6, 10, 1080-1089
  • 5. Bhatnagar N.S., Pradnya K., Arya V.K., 1987, Primary creep analysis of an anisotropic thick-walled spherical shell, Journal of Pressure Vessel Technology, 109, 347-351
  • 6. Finnie I., Heller W.R., 1959, Creep of Engineering Materials, McGraw-Hill Book Co. Inc., New York
  • 7. Ghannad M., Nejad M.Z., 2013, Elastic solution of pressurized clamped-clamped thick cylindrical shells made of functionally graded materials, Journal of Theoretical and Applied Mechanics, 51, 4, 1067-1079
  • 8. Fesharaki J., Loghman A., Yazdipoor M., Golabi S., 2014, Semi-analytical solution of timedependent thermomechanical creep behavior of FGM hollow spheres, Mechanics of Time-Dependent Materials, 18, 41-53
  • 9. Johnson A.E., Khan B., 1963, Creep of metallic thick-walled spherical vessels subject to pressure and radial thermal gradient at elevated temperatures, International Journal of Mechanical Sciences, 5, 507-532
  • 10. Kao R., 1981, Nonlinear creep buckling analysis of initially imperfect shallow spherical shells, Computers and Structures, 14, 1/2, 111-122
  • 11. Loghman A., Aleayoub S.M.A., Hasani Sadi M., 2012, Time-dependent magnetothermoelastic creep modeling of FGM spheres using method of successive elastic solution, Applied Mathematical Modelling, 36, 836-845
  • 12. Loghman A., Ghorbanpourarani A., Aleayoub S.M.A., 2011, Time-dependent creep stress redistribution analysis of thick-walled functionally graded spheres, Mechanics of Time-Dependent Materials, 15, 353-365
  • 13. Loghman A., Shokouhi N., 2009, Creep damage evaluation of thick-walled spheres using a long- -term creep constitutive model, Journal of Mechanical Science and Technology, 23, 2577-2582
  • 14. Marcadon V., 2011, Mechanical modelling of the creep behaviour of hollow-sphere structures, Computational Materials Science, 50, 3005-3015
  • 15. Miller G.K., 1995, Stresses in a spherical pressure vessel undergoing creep and dimensional changes, International Journal of Solids and Structures, 32, 14, 2077-2093
  • 16. Miyazaki N., Yagawa G., Ando Y., 1977, A parametric analysis of creep buckling of a shallow spherical shell by the finite element method, Nuclear Engineering and Design, 41, 257-263
  • 17. Nejad M.Z., Hoseini Z., Niknejad A., Ghannad M., 2011, A new analytical solution for creep stresses in thick-walled spherical pressure vessels, Journal of Basic and Applied Scientific Research, 1, 11, 2162-2166
  • 18. Nejad M.Z., Hoseini Z., Taghizadeh T., Niknejad A., 2013, Closed-form analytical solution for creep stresses of pressurized functionally graded material thick spherical shells, Advanced Science Letters, 19, 2, 464-467
  • 19. Noda N., Ootao Y., Tanigawa Y., 2012, Transient thermoelastic analysis for a functionally graded circular disk with piecewise power law, Journal of Theoretical and Applied Mechanics, 50, 3, 831-839
  • 20. Pankaj T., 2011, Creep transition stresses of a thick isotropic spherical shell by finitesimal deformation under steady-state of temperature and internal pressure, Thermal Science, 15, 2, 157-165
  • 21. Penny R.K., 1967, The creep of spherical shells containing discontinuities, International Journal of Mechanical Sciences, 5, 373-388
  • 22. Sakaki T., Kuroki T., Sugimoto K., 1990, Creep of a hollow sphere, Journal of Applied Mechanics, Transactions ASME, 57, 276-281
  • 23. Xirouchakis P.C., Jones N., 1979, Axisymmetric and bifurcation creep buckling of externally pressurized spherical shells, International Journal of Solids and Structures, 16, 131-148
  • 24. You L.H., Ou H., Zheng Z.Y., 2008, Steady-state creep analysis of thick-walled spherical pressure vessels with varying creep properties, Journal of Pressure Vessel Technology, 130, 0145011- -0145015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-432de5e5-6d9e-40cf-b673-1fbe95d2e616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.