PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of roughness coefficient on hydrodynamic simulations: A case study at the Co Chien estuary, Mekong delta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
CESD 2024 : Conference on Earth Sciences : November 11th, 2024, Ho Chi Minh City, Vietnam
Języki publikacji
EN
Abstrakty
EN
Erosion in the Mekong Delta in general and the coastal area of Tra Vinh province in particular is still happening. One of the direct causes of erosion is due to hydrodynamic factors. Numerical modeling is important in studying and analyzing hydrodynamic regimes in coastal and estuarine areas. The reliability of simulation results heavily depends on the accurate determination of input parameters, among which the roughness coefficient is a crucial parameter. In coastal and estuarine areas, determining the value of the roughness coefficient is challenging due to the complex topography and hydrodynamic factors influenced by the combined effects of waves, currents, and tides. This study aims to assess the impact of the roughness coefficient (Manning's M- inverse of Manning's n ) on simulation results using the MIKE 21/3 Coupled Model FM at the Co Chien Estuary - one of the main branches of the Mekong River. The results show that as the Manning number (M) increases, water level range and current speed rise, with M impact diminishing from the river mouth toward the sea. M notably affects spring tides more than neap tides, especially at tidal troughs and peak velocities. A Manning value of 40–50 provides reliable results. This study initially identifies a suitable range of Manning's M values for the study area, contributing to improving the reliability of numerical models.
Rocznik
Strony
art. no. 022
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., zdj.
Twórcy
  • Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam
  • Vietnam National University, Ho Chi Minh City, Vietnam
  • Institute of Coastal and Offshore Engineering, Ho Chi Minh City, Vietnam, Vietnam
autor
  • Institute of Coastal and Offshore Engineering, Ho Chi Minh City, Vietnam, Vietnam
Bibliografia
  • 1. Orieschnig, C., Venot, J.-P., Massuel, S., Eang, K.E., Chhuon, K., Lun, S. et al. (2022) A MultiMethod Approach to Flood Mapping: Reconstructing Inundation Changes in the Cambodian Upper Mekong Delta. Journal of Hydrology, 610, 127902. https://doi.org/10.1016/j.jhydrol.2022.127902
  • 2. Hoang, L.P., Lauri, H., Kummu, M., Koponen, J., van Vliet, M.T.H., Supit, I. et al. (2016) Mekong River flow and hydrological extremes under climate change. Hydrology and Earth System Sciences, Copernicus GmbH. 20, 3027–41. https://doi.org/10.5194/hess-20-3027-2016
  • 3. Xiao, H., Zhang, Z., Tang, Y., Li, H. and Tang, Q. (2024) Numerical modeling for determination of the dominant factor inducing saltwater intrusion into shallow aquifer in the Mekong River Estuary within the Mekong Delta, Vietnam. Sustainable Horizons, 12, 100111. https://doi.org/10.1016/j.horiz.2024.100111
  • 4. Lai, Y.G. (2024) An Integrated Current–Wave–Sediment Model for Coastal and Estuary Simulation. Water, Multidisciplinary Digital Publishing Institute. 16, 415. https://doi.org/10.3390/w16030415
  • 5. Dahmani, A. el alim, Mezouar, K., Salem Cherif, Y. and Sallaye, M. (2021) Coastal processes and nearshore hydrodynamics under high contrast wave exposure, Bateau-cassé and Stamboul coasts, Algiers Bay. Estuarine, Coastal and Shelf Science, 250, 107169. https://doi.org/10.1016/j.ecss.2021.107169
  • 6. Mandal, S. and Chaudhuri, S. (2023) Identification of littoral cell and its impact on shoreline dynamics along the Purba Medinipur–Balasore coastal stretch, Bay of Bengal, India: A numerical modelling and geospatial study. Regional Studies in Marine Science, 57, 102740. https://doi.org/10.1016/j.rsma.2022.102740
  • 7. Morovati, K., Tian, F., Pokhrel, Y., Someth, P., Shi, L., Zhang, K. et al. (2024) Fishery and agriculture amidst human activities and climate change in the Mekong River: A review of gaps in data and effective approaches towards sustainable development. Journal of Hydrology, 644, 132043. https://doi.org/10.1016/j.jhydrol.2024.132043
  • 8. Yun, X., Song, J., Wang, J. and Bao, H. (2024) Modelling to assess the suitability of hydrologicalhydrodynamic model under the hydropower development impact in the Lancang-Mekong river basin. Journal of Hydrology, 637, 131393. https://doi.org/10.1016/j.jhydrol.2024.131393
  • 9. Pham, H.T.H. and Bui, L.T. (2023) Mechanism of erosion zone formation based on hydrodynamic factor analysis in the Mekong Delta coast, Vietnam. Environmental Technology & Innovation, 30, 103094. https://doi.org/10.1016/j.eti.2023.103094
  • 10. Vu, M.T., Luu, C., Bui, D.Q., Vu, Q.H. and Pham, M.Q. (2024) Simulation of hydrodynamic changes and salinity intrusion in the lower Vietnamese Mekong Delta under climate change-induced sea level rise and upstream river discharge. Regional Studies in Marine Science, 78, 103749. https://doi.org/10.1016/j.rsma.2024.103749
  • 11. Le, X.H., Kim, Y., Van Binh, D., Jung, S., Hai Nguyen, D. and Lee, G. (2024) Improving rainfallrunoff modeling in the Mekong river basin using bias-corrected satellite precipitation products by convolutional neural networks. Journal of Hydrology, 630, 130762. https://doi.org/10.1016/j.jhydrol.2024.130762
  • 12. Chow, V. te. (1959) Open-Channel Hydraulics. MC Graw Hill Seattle, WA. 13. Silva-Cancino, N., Salazar, F., Bladé, E. and Sanz-Ramos, M. (2024) Influence of breach parameter models on hazard classification of off-stream reservoirs. Water Science and Engineering,. https://doi.org/10.1016/j.wse.2024.05.001
  • 14. Abouelsaad, O., Hassan, A., Omar, M. and Hinkelmann, R. (2024) Identifying manning roughness coefficient using automatic calibration method and simulation of pollution incidents in the Nile River, Egypt. Journal of Hydrology: Regional Studies, 55, 101908. https://doi.org/10.1016/j.ejrh.2024.101908
  • 15. Arcement, G.J. and Schneider, V.R. (1989) Guide for selecting Manning’s roughness coefficients for natural channels and flood plains [Internet]. US Geological Survey, United States.
  • 16. Lang, S., Ladson, T. and Anderson, B. (2004) A review of empirical equations for estimating stream roughness and their application to four streams in Victoria. Australasian Journal of Water Resources, Taylor & Francis. 8, 69–82.
  • 17. Shen, E., Liu, G., Dan, C., Chen, X., Ye, S., Li, R. et al. (2023) Estimating Manning’s coefficient for sheet n during rainstorms. CATENA, 226, 107093. https://doi.org/10.1016/j.catena.2023.107093
  • 18. Wei, Z., Zhang, J., Wang, D., Gao, Y. and Cheng, J. (2024) The effects of non-local observations on the adjoint estimation of local model parameters: An example of Manning’s coefficient in a tidal model over the Bohai, Yellow, and East China Seas. Journal of Hydrology, 131437. https://doi.org/10.1016/j.jhydrol.2024.131437
  • 19. Amsie, A.B., Ayalew, A.T., Mada, Z.M. and Finsa, M.M. (2024) Acclimatize experimental approach to adjudicate hydraulic coefficients under different bed material configurations and slopes with and without weir. Heliyon, 10, e32162. https://doi.org/10.1016/j.heliyon.2024.e32162
  • 20. Huang, Y., Li, Z., Sun, C., Feng, Z., Li, J., Wei, D. et al. (2023) Using the roughness height and manning number in hydrodynamic model to estimate the impact of intensive oyster aquaculture by floating & fixed rafts on water exchange with an application in Qinzhou Bay, China. Ecological Modelling, 476, 110230. https://doi.org/10.1016/j.ecolmodel.2022.110230
  • 21. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282–90. https://doi.org/10.1016/0022-1694(70)90255-6
  • 22. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, American society of agricultural and biological engineers. 50, 885–900.
  • 23. Mohd Salleh, S.H., Wan Mohtar, W.H.M., Abdul Maulud, K.N., Haron, N.F., Abd Rashid, N. and Awang, N.A. (2025) Performance evaluation of high discharge estuarine hydrodynamic model. Ain Shams Engineering Journal, 16, 103322. https://doi.org/10.1016/j.asej.2025.103322
  • 24. Pranowo, W. and Ramadhani, A.R. (2025) Error-based correlation coefficient: An alternative to combine error and coefficient of correlation and its application in geophysical data. Journal of Computational Science, 88, 102611. https://doi.org/10.1016/j.jocs.2025.102611
  • 25. Shen, Y., Liu, D., Jiang, L., Yin, J., Nielsen, K., Bauer-Gottwein, P. et al. (2020) On the Contribution of Satellite Altimetry-Derived Water Surface Elevation to Hydrodynamic Model Calibration in the Han River. Remote Sensing, Multidisciplinary Digital Publishing Institute. 12, 4087. https://doi.org/10.3390/rs12244087
  • 26. Nguyen Xuan, L., Nguyen Le, T., Tran Anh, Q. and Trinh Tuan, L. (2024) Estimation of tidal energy potential in the Vietnam East Sea: A comprehensive analysis using semi-empirical tide models. Regional Studies in Marine Science, 80, 103859. https://doi.org/10.1016/j.rsma.2024.103859
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-432b39ef-ac29-4ead-b858-2fff2c3c4ad6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.