Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: Radiomics quantify radiological data to correlate with clinical findings. Dyssynchrony, a proposed radiomic parameter measured via phase images, reflects the temporal discoordination of ventricular contraction, which can impair overall cardiac efficiency. This study assessed the consistency and reliability of dyssynchrony in laminar and turbulent flow compartments under varying image acquisition. It also evaluated the relationship between dyssynchrony and fluid dynamics alterations. Methods: The dataset included 64 dynamic images using gamma camera (128,000 frames) generated using an in-home phantom, representing combinations of flow velocity, count, and frame rates. Phase and amplitude images were generated and analyzed to calculate synchrony, entropy, approximate entropy (ApEn), and bounded-ApEn for different rotation directions. Entropy values were examined under parameter changes, with comparisons using Pearson’s test, ANOVA, logistic regression, and receiver operating characteristic (ROC) analysis. Results: Images were categorized by activity concentrations: Group 1 (37 MBq), Group 2 (29.5 MBq), and Group 3 (18.5 MBq). Group 1 showed a strong negative correlation between entropy and frame rates (r = −0.991, p < 0.001), while Group 3 displayed positive correlations between frame rate, ApEn, gray count, and pixel count. Logistic regression predicted turbulence (AUC = 0.93) and direction (AUC = 0.96) using bounded-ApEn. Regression analysis indicated ApEn and bounded-ApEn significantly predicted vortex parameters (R2
Słowa kluczowe
Rocznik
Tom
Strony
227--238
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Radiologic Sciences Department, Kuwait University, Kuwait City 31470, Kuwait
Bibliografia
- 1. Nagueh SF. Mechanical dyssynchrony in congestive heart failure: diagnostic and therapeutic implications. J Am Coll Cardiol. 2008;51:18-22. Doi: 10.1016/j.jacc.2007.08.052
- 2. Polidori T, De Santis D, Rucci C, et al. Radiomics applications in cardiac imaging: a comprehensive review. Radiol med. 2023;128(8):922-933. doi:10.1007/s11547-023-01658-x
- 3. Sabouri M, Hajianfar G, Hosseini Z, et al. Myocardial Perfusion SPECT Imaging Radiomic Features and Machine Learning Algorithms for Cardiac Contractile Pattern Recognition. J Digit Imaging. 2022;36(2):497-509. doi:10.1007/s10278-022-00705-9
- 4. Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and Promises of PET Radiomics. International Journal of Radiation Oncology*Biology*Physics. 2018;102(4):1083-1089. doi:10.1016/j.ijrobp.2017.12.268
- 5. Khandoker AH, Palaniswami M, Begg RK. A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J NeuroEngineering Rehabil. 2008;5(1). doi:10.1186/1743-0003-5-4
- 7. Li X, Zheng D, Zhou S, Tang D, Wang C, Wu G. Approximate entropy of fetal heart rate variability as a predictor of fetal distress in women at term pregnancy. Acta Obstet Gynecol Scand. 2005;84(9):837-843. doi:10.1111/j.0001-6349.2005.00773.x
- 8. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88(6):2297-2301. doi:10.1073/pnas.88.6.2297
- 9. Jones KA, Paterson CA, Hamilton DJ, et al. Optimising approximate entropy for assessing cardiac dyssynchrony with radionuclide ventriculography. Biomedical Signal Processing and Control. 2021;68:102703. doi:10.1016/j.bspc.2021.102703
- 10. O’Connell JW, Schreck C, Moles M, et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. Journal of Nuclear Cardiology. 2005;12(4):441-450. doi:10.1016/j.nuclcard.2005.05.006
- 11. Jimenez-Angeles L, Medina-Banuelos V, Valdes-Cristerna R, Vallejo E. Analysis of Ventricular Contraction by Factorial Phase Imaging with Equilibrium Radionuclide Angiography. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. Published online August 2006:1081-1084. doi:10.1109/iembs.2006.259252
- 12. Nichols KJ, Van Tosh A, Wang Y, De Bondt P, Palestro CJ, Reichek N. Automated detection of left ventricular dyskinesis by gated blood pool SPECT. Nuclear Medicine Communications. 2010;31(10):881-888. doi:10.1097/mnm.0b013e32833d82ff
- 13. Lalonde M, Wells RG, Birnie D, Ruddy TD, Wassenaar R. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome. Med Phys. 2014;41(7):072506. doi:10.1118/1.4883881
- 14. Johnson CJ, Roberts JD, James JH, et al. Comparison of radionuclide angiographic synchrony analysis to echocardiography and magnetic resonance imaging for the diagnosis of arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2015;12(6):1268-1275. doi:10.1016/j.hrthm.2015.02.033
- 15. Sullivan DC, Obuchowski NA, Kessler LG, et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology. 2015;277(3):813-825. doi:10.1148/radiol.2015142202
- 16. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiology of Aging. 2002;23(1):23-26. doi:10.1016/s0197-4580(01)00266-4
- 17. Xu Y, Ma X, Ning X. Estimation of ApEn for short-term HFECG based on multi-resolution analysis. Physica A: Statistical Mechanics and its Applications. 2007;376:401-408. doi:10.1016/j.physa.2006.10.055
- 18. Kuronuma K, Miller RJH, Van Kriekinge SD, et al. Incremental prognostic value of stress phase entropy over standard PET myocardial perfusion imaging variables. Eur J Nucl Med Mol Imaging. 2023;50(12):3619-3629. doi:10.1007/s00259-023-06323-z
- 19. Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328-338. doi:10.1148/radiol.2020191145
- 20. Wang Y, Lu S. A bounded random process model and its application in heart rate variability analysis. Intl J Phys Sci. 2011;6:651-659. 21. Alenezi A. MATLAB central. https://www.mathworks.com/matlabcentral/profile/authors/27389582?detail=fileexchange. Accessed August 5, 2023.
- 22. Jones KA, Small AD, Ray S, et al. Radionuclide ventriculography phase analysis for risk stratification of patients undergoing cardiotoxic cancer therapy. Journal of Nuclear Cardiology. 2022;29(2):581-589. doi:10.1007/s12350-020-02277-z
- 23. Singh H, Singhal A, Sharma P, Patel CD, Seth S, Malhotra A. Quantitative assessment of cardiac mechanical synchrony using equilibrium radionuclide angiography. Journal of Nuclear Cardiology. 2013;20(3):415-425. doi:10.1007/s12350-013-9705-3
- 24. Juarez-Orozco LE, Monroy-Gonzalez A, Prakken NHJ, et al. Phase analysis of gated PET in the evaluation of mechanical ventricular synchrony: A narrative overview. Journal of Nuclear Cardiology. 2019;26(6):1904-1913. doi:10.1007/s12350-019-01670-7
- 25. Vallejo E, Jiménez L, Rodríguez G, Roffe F, Bialostozky D. Evaluation of Ventricular Synchrony with Equilibrium Radionuclide Angiography: Assessment of Variability and Accuracy. Archives of Medical Research. 2010;41(2):83-91. doi:10.1016/j.arcmed.2010.02.003
- 26. Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy. Journal of the American College of Cardiology. 2002;40(11):2022-2030. doi:10.1016/s0735-1097(02)02569-x
- 27. Dauphin R, Nonin E, Bontemps L, et al. Quantification of Ventricular Resynchronization Reserve by Radionuclide Phase Analysis in Heart Failure Patients. Circ: Cardiovascular Imaging. 2011;4(2):114-121. doi:10.1161/circimaging.110.950956
- 28. Marcassa C, Campini R, Verna E, Ceriani L, Giannuzzi P. Assessment of cardiac asynchrony by radionuclide phase analysis: Correlation with ventricular function in patients with narrow or prolonged QRS interval. European J of Heart Fail. 2007;9(5):484-490. doi:10.1016/j.ejheart.2007.01.002
- 29. Fukunaga T, Sanui K, Kadokami T, Sasaki M. Influences of radionuclides on left ventricular phase analysis of gated myocardial perfusion single-photon emission computed tomography images in ischemic heart disease. Ann Nucl Med. 2021;35(6):735-743. doi:10.1007/s12149-021-01615-6
- 30. Domenichini F, Pedrizzetti G. Asymptotic Model of Fluid–Tissue Interaction for Mitral Valve Dynamics. Cardiovasc Eng Tech. 2014;6(2):95-104. doi:10.1007/s13239-014-0201-y
- 31. Jahanzamin J, Fatouraee N, Nasiraei-Moghaddam A. Effect of turbulent models on left ventricle diastolic flow patterns simulation. Computer Methods in Biomechanics and Biomedical Engineering. 2019;22(15):1229-1238. doi:10.1080/10255842.2019.1655642
- 32. Varghese SS, Frankel SH. Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels. Journal of Biomechanical Engineering. 2003;125(4):445-460. doi:10.1115/1.1589774
- 33. Saqr KM, Tupin S, Rashad S, et al. Physiologic blood flow is turbulent. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-72309-8
- 34. Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Medical Engineering & Physics. 2011;33(3):263-280. doi:10.1016/j.medengphy.2010.10.014
- 35. Tobin N, Manning KB. Toward modeling thrombosis and thromboembolism in laminar and turbulent flow regimes. Numer Methods Biomed Eng. 2022;38(10). doi:10.1002/cnm.3638
- 36. Qian K xi. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump. Journal of Biomedical Engineering. 1990;12(6):533-535. doi:10.1016/0141-5425(90)90066-v
- 37. Kheradvar A, Rickers C, Morisawa D, Kim M, Hong GR, Pedrizzetti G. Diagnostic and prognostic significance of cardiovascular vortex formation. Journal of Cardiology. 2019;74(5):403-411. doi:10.1016/j.jjcc.2019.05.005
- 38. Marchese P, Cantinotti M, Van den Eynde J, et al. Left ventricular vortex analysis by high-frame rate blood speckle tracking echocardiography in healthy children and in congenital heart disease. IJC Heart & Vasculature. 2021;37:100897. doi:10.1016/j.ijcha.2021.100897
- 39. Elbaz MSM, Calkoen EE, Westenberg JJM, Lelieveldt BPF, Roest AAW, van der Geest RJ. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. Journal of Cardiovascular Magnetic Resonance. 2014;16(1):78. doi:10.1186/s12968-014-0078-9
- 40. Alenezi A, McKiddie F, Nath M, Mayya A, Welch A. 2024. Cardiotoxicity detection tool for breast cancer chemotherapy: a retrospective study. PeerJ Computer Science 12:e2230 https://doi.org/10.7717/peerj-cs.2230
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4329e581-3093-467d-881c-d127edd5ce63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.