PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Oxidizing Reactor on Flue Gas Denitrification by Ozonation and Possibility of by-Product Separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of laboratory scale research have been presented on the effects of an oxidizing reactor on ozone consumption and by-producs composition and separation of simultaneous NOx and SO2 removal from a carrier gas by ozonation method and absorption in an alkaline solution. The additional Dreschel washer added before two washers containing 100 ml of 0.1 molar NaOH solution played the role of an oxidation reactor. Its effect was investigated using an empty (dry or wetted) or filled with packing elements washer. The measured by-products in a scrubber and in the oxidizing reactor were SO32-, SO42-, NO2- and NO3- ions, respectively. It has been shown that use of oxidizing reactor improves NOx removal efficiency reducing ozone consumption. Wetting of the oxidation reactor with water enables a preliminary separation of sulphur and nitrogen species between the oxidizing reactor and an alkaline absorber. Application of packing elements in the oxidizing reactor allows to retain 90% of nitrogen compounds in it. Some results were confirmed by tests in pilot scale.
Rocznik
Strony
177--191
Opis fizyczny
Bibliogr. 34 poz., wykr., tab.
Twórcy
  • 1Wroclaw University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • 2Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Carpenter A. M., 2013. Advances in multi-pollutant control. IEA CLEAN COAL CENTRE, CCC/227.
  • 2. Chen L., Lin J.-W., Yang Ch.-L., 2002. Absorption of NO2 in a packed tower with Na2SO3 aqueous solution. Environ. Prog., 21, No.4, 225-230. DOI: 10.1002/ep.670210411.
  • 3. Chirona R.J., Alshuter B., 1999. Chemical aspects of NOx scrubbing. Pollution Engineering, 32, 33-36.
  • 4. Dora J., Gostomczyk M.A., Jakubiak M., Kordylewski W., Mista W., Tkaczuk M., 2009. Parametric studies of the effectiveness of NO oxidation process by ozone. Chem. Process Eng., 30, 621–634.
  • 5. Fridman A., 2008. Plasma Chemistry. Cambridge University Press, Cambridge.
  • 6. Fujishima H., Kuroki T., Tatsumi A., Okubo M., Otsuka K., Yamamoto T., Yoshida K., 2008. Performance characteristics of pilot-scale NOx removal from boiler emissions using plasma-chemical process. 11th International Conference on Electrostatic Precipitation, Hangzhou, 644-648. DOI: 10.1109/08IAS.2008.120.
  • 7. Głomba M., Hałat A., Kordylewski W., Łuszkiewicz D., 2016. Research on products of simultaneous removal of SO2 and NOx from flue gas by ozonation and alkaline absorption. Environ. Prot. Eng., 42, 125-136. DOI: 10.5277/epe160208.
  • 8. Hikita H, Asai S., Tsuji T., 1977. Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions. AIChE J., 23, 538–544. DOI: 10.1002/aic.690230419.
  • 9. Jaroszyńska-Wolińska J., 2009. Investigations of the chemical reactions of nitrogen oxides with ozone generated in low-temperature plasma. Instytut Chemii i Technologii Jądrowej, Warszawa.
  • 10. Jędrusik M., Kordylewski W., Łuszkiewicz D., 2015. Removal of nitrogen oxides from flue gas by ozonation method. Rynek Energii, 6, 119-124.
  • 11. Jie D., Heruijing C., Qin Z., Jiandong L., Junjun X., Shule Z., 2016. Selective denitrification of flue gas by O3 and ethanol mixtures in a duct: Investigation of processes and mechanisms. J. Hazard. Mater., 311, 218–229. DOI: 10.1016/j.jhazmat.2016.02.063.
  • 12. Jie D., Qin Z., Shule Z., 2014. Simultaneous desulfurization and denitrification of flue gas by catalytic ozonation over Ce–Ti catalyst. Fuel Process. Technol., 128, 449–455. DOI: 10.1016/j.fuproc.2014.08.003.
  • 13. Joshi J.B., Mahajani V.V., Juvekar V.A., 1985. Absorption of NOx gases. Chem. Eng. Com., 33, 1-92. DOI: 10.1080/00986448508911161.
  • 14. Kordylewski W., Jakubiak M., Hardy T., 2013. Pilot plant studies on NOx removal via NO ozonation and absorption. Arch. Environ. Prot., 39, 93-106. DOI: 10.2478/aep-2013-0025.
  • 15. Krzyżyńska R., Hutson N.D., 2012. Effect of solution pH on SO2, NOx, and Hg removal from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber. J. Air Waste Manage. Assoc., 62, 2, 212-220. DOI: 10.1080/10473289.2011.642951.
  • 16. Kuropka J., 2012. Technologie oczyszczania gazów z dwutlenku siarki i tlenków azotu. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • 17. Littlejohn D., Wang Y., Chang S-G., 1993. Oxidation of aqueous sulfite ion by nitrogen dioxide. Environ. Sci. Technol., 27, 2162-2167. DOI: 10.1021/es00047a024.
  • 18. Modern Power Systems, 2015. A pioneering NOx removal technology for the power industry. Modern Power Systems, 35(5), 32-33.
  • 19. Mok S.Y., 2006. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas. Chem. Eng. J., 118, 63-67. DOI: 10.1016/j.cej.2006.01.011.
  • 20. Nelo S.K., Leskela K.M., Sohlo J.J.K., 1997. Simultaneous oxidation of nitrogen oxide and sulfur dioxide with ozone and hydrogen peroxide. Chem. Eng. Technol., 20, 40-42. DOI: 10.1002/ceat.270200108.
  • 21. Okubo M., Kuroki T., Kitaura K. and Yamamoto T., 2006. Diesel engine emission control using pulsed corona plasma-chemical hybrid process. J. Environ. Eng., 1, 29-38. DOI: 10.1299/jee.1.29.
  • 22. Omar K., 2008. Evaluation of BOC’s LotOx process for the oxidation of elemental mercury in flue gas from a coal-fired boiler. Topical report for Linde Group and U.S. Department of Energy by Western Research Institute (WRI-08-RO10).
  • 23. Regulation of the Minister of Environment on conditions to be met when introducing sewage into the water or soil and on substances particularly harmful to the aquatic environment (Dz. U. 2009, nr 27, poz. 169), (in Polish).
  • 24. Sander R., 1999. Compilation of Henry’s Law constants for inorganic and organic species of potential importance in environmental chemistry. Air Chemistry Department Max-Planck Institute of Chemistry, Germany.
  • 25. Skalska K., Miller J.S. , Ledakowicz S., 2011. Kinetic model of NOx ozonation and its experimental verification. Chem. Eng. Sci., 66, 3386-3391. DOI: 10.1016/j.ces.2011.01.028.
  • 26. Stamate E., Jorgensen L., Jensen T. K., Chen W., Kristensen P. G., Tobiasen L., Simonsen P., Michelsen P. K., 2009. Pilot test and optimization of plasma based DeNOx. Final Report PSO project No. 2006-1-6365.
  • 27. Sun W.Y., Ding S.L., Zeng S.S., Su S., Jiang W., 2011. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone. J. Hazard. Mater., 192, 124–130. DOI: 10.1016/j.jhazmat.2011.04.104.
  • 28. Sun C., Zhao N., Zhuang Z.K., Wang H., Liu Y., Weng X., Wu Z., 2014. Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements. J. Hazard. Mater., 274, 376–383. DOI: 10.1016/j.jhazmat.2014.04.027.
  • 29. Thomas D., Vaderschuren J., 2000. Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions. Sep. Purif. Technol., 18, 37-45. DOI: 10.1016/S1383-5866(99)00049-0.
  • 30. Wallas S.M., 1988. Chemical processes: Equipment selection and design. Butterworth, Wobum, MA.
  • 31. Wang H., Zhuang Z., Sun C., Zhao N., Liu Y., Wu Z., 2016. Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process. J. Environ. Sci. (China). 41, 51-58. DOI: 10.1016/j.jes.2015.05.015.
  • 32. Yamamoto T., Okubo M., Hayakawa K., Kitaura K., 2001. Towards ideal NOx control technology using a plasma-chemical hybrid process. IEEE Trans. Ind. Appl., 37, 1492-1498. DOI: 10.1109/28.952526.
  • 33. Zhang J., Zhang R., Chen X., Tong M., Kang W., Guo S., Zhou Y., Lu J., 2014. Simultanoeus removal of NO and
  • 34. SO2 from flue gas by ozone oxidation and NaOH absorption. Ind. Eng. Chem. Res., 53, 6450-6456. DOI: 10.1021/ie403423p.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4325f468-743e-4c7d-94e6-80bd69f7e904
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.