PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoremediation Efficiency of Water Hyacinth for Batik Textile Effluent Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study focused on the phytoremediation efficiency of water hyacinth for the batik effluent treatment. Three operating factors were investigated such as retention times (0 to 28 days), batik effluent strength (20, 30 and 60%), and number of water hyacinth clumps (8, 10 and 12 clumps). The water hyacinth efficiencies was monitored through the measurement of dry weight, color, chemical oxygen demand (COD), total suspended solid (TSS), and pH. The highest efficiency of color and COD in the batik effluent treatment were achieved at day 7 with 83% (61 mg/L) and 89% (147 ADMI) removals, respectively. Both wastewater parameters were removed to below the Standard A for COD and Standard B for color. Meanwhile for TSS, the removal decreased as the batik effluent strength increased, where the highest removal (92%) was achieved at day 28 with 8 number of plant clumps. The pH was observed in range of 6 to 7. The results indicated that water hyacinth would be the best option for the low cost batik effluent treatment.
Rocznik
Strony
177--187
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Chemical Engineering Programme, Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
  • Chemical Engineering Programme, Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
  • Chemical Engineering Programme, Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
Bibliografia
  • 1. Amran, N.A. 2018. Column study for the removal of colour from batik printing effluent using wastewater sludge carbon. Universiti Teknologi Petronas.
  • 2. Asgari, G., Faradmal, J., Nasab, H.Z. & Ehsani, H. 2019. Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder. Advanced Powder Technology 30: 1297–1311.
  • 3. Birgani, P.M., Ranjbar, N., Abdullah, R.C., Wong, K.T., Lee, G., Ibrahim, S., Park, C., Yoon, Y. & Jang, M. An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shellbased activated carbon application. Journal of Environmental Management 184: 229–239.
  • 4. Buthelezi S.P., Olaniran A.O. & Pillay B. 2012. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules 17: 14260–14274
  • 5. Dotto, J., Fagundes-Klen, M.R., Veit, M.T., Palácio, S.M. & Bergamasco, R. 2019. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production 208: 656–665
  • 6. El-Kassas, H.Y & Mohamed, L.A. 2014. Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research 40: 301–308
  • 7. Gandhi N., Sirisha D., & Sekhar K.B.C. 2013. Phytoremediation of chromium and fluoride in in industrial wastewater by using aquatic plant ipmoea. Science of the Total Environment. 12: 1–4.
  • 8. Kassim, M.A., Latif, N.A.F.A. & Hashim, N.H.F. 2018. Decolorization and total nitrogen removal from batik effluent using alginate immobilized freshwater microalgae Chlorella sp. Journal of Applied Biology & Biotechnology 6: 26–34.
  • 9. Khalik, W.F., Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. & Ridwan. F. 2015. Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana 44: 607–612.
  • 10. Khandare R.V. & Govindwar S.P. 2015. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnology Advances: 33(8): 1697–1714.
  • 11. Kumar P.S., Varjani S.J. & Suganya S. 2018. Treatment of dye wastewater using an ultrasonic aided nanoparticle staked activated carbon: Kinetic and isotherm modeling. Bioresource Technology. 250: 716–722.
  • 12. Mahajan, P., Kaushal, J., Upmanyu, A. & Bhatti, J. 2019. Assessment of Phytoremediation Potential of Chara vulgaris to Treat Toxic Pollutants of Textile Effluent. Journal of Toxicology, Article ID 8351272, https://doi.org/10.1155/2019/8351272.
  • 13. Malik, S.N., Ghosh, P.C., Vaidya, A.N. & Mudliar, S.N. 2018. Catalytic ozone pretreatment of complex textile effluent using Fe2+ and zero valent iron nanoparticles. Journal of Hazardous Materials 357: 363–375.
  • 14. Mukimin, A., Vistanty, H., Zen, N., Purwanto, A. & Wicaksono, K.A. 2018. Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering. Journal of Water Process Engineering 21: 77–83
  • 15. Nemerow N.L. 1971. Liquid waste of industry, theories, practices and treatment. Addition-Wesley Publishing Company 66: 12–20.
  • 16. Pavas, E.G., Dobrosz-Gómez, I. & Gómez-García, M.A. 2018. Optimization of sequential chemical coagulation – electro-oxidation process for the treatment of an industrial textile wastewater. Journal of Water Process Engineering 22: 73–79
  • 17. Rashidi, H.R., Nik Sulaiman, N.M. & Hashim, N.A. 2012. Batik industry synthetic wastewater treatment using nanofiltration membrane. Procedia Engineering 44: 2010–2012
  • 18. Rashidi, H.R., Sulaiman, N.M., Hashim, N.A. & Che Hassan, C.R. 2013. Synthetic batik wastewater pretreatment progress by using physical treatment. Advance Materials Research 627: 394–398.
  • 19. Sajab, M.S., Ismail, N.N.N., Santanaraj, J., Mohammad, A.W., Hassan, H.A., Chia, C.H., Zakaria, S. & Noor, A. M. 2019. Insight observation into rapid discoloration of batik textile effluent by in situ formations of zero valent iron. Sains Malaysiana 48: 393–399.
  • 20. Sharifah, A. 2018. Development of integrated kenaf core cellulose nanofiltration flatsheet membrane for batik wastewater. IPSis Biannual Publication, 13 (13). Institute of Graduate Studies, UiTM, Shah Alam.
  • 21. Sharma, A., Syed, Z., Brighu, U., Gupta, A.B. & Ram, C. 2019. Adsorption of textile wastewater on alkali-activated sand. Journal of Cleaner Production, 220: 23–32
  • 22. Tambunan, J.A.M., Effendi, H. & Krisanti, M. 2018. Phytoremediating batik wastewater using vetiver Chrysopogon zizanioides (L). Polish Journal of Environmental Studies 27: 1281–1288.
  • 23. Tan K.A., Morad N. & Ooi J.Q. 2016. Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. International Journal of Environmental Science and Development 7: 724–728.
  • 24. Tangahu, B.V., Ningsih, D.A., Kurniawan, S.B. & Imron, M.F. 2019 Study of BOD and COD removal in batik wastewater using Scirpus grossus and Iris pseudacorus with intermittent exposure system. Journal of Ecological Engineering 20: 130–134.
  • 25. Tavangar, T., Jalali, K., Shahmirzadi, M.A.A. & Karimi, M. 2019. Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – Nanofiltration process. Separation and Purification Technology 216: 115–125
  • 26. Wibowo, S.E., Rokhmat, M., Rahman, D.Y., Murniati, R., Khairurrijal & Abdullah, M. 2017. Batik Wastewater treatment using TiO2 nanoparticles coated on the surface of plastic sheet. Procedia Engineering 170: 78–83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43139210-d47e-499f-b6fe-ccdae27b5c8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.