PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power spectrum analysis for determination of the number of Vertical Axis Wind Turbine blades

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allow the reduction of costs and increase the output. The target is the maximum power of the rotor. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. Some wind tunnel measurements of the hydrodynamic force according to pitch angle of the blade are also shown. The major result of this research is the Vertical Axis Wind Turbine kmax ratiopower characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
Rocznik
Strony
153--161
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Opole University of Technology, Department of Mechanical Engineering, 5 Mikołajczyka st., 45-758 Opole, Poland
autor
  • Opole University of Technology, Department of Mechanical Engineering, 5 Mikołajczyka st., 45-758 Opole, Poland
autor
  • Opole University of Technology, Department of Mechanical Engineering, 5 Mikołajczyka st., 45-758 Opole, Poland
autor
  • Opole University of Technology, Department of Mechanical Engineering, 5 Mikołajczyka st., 45-758 Opole, Poland
Bibliografia
  • 1. Boczar T. (2010). Use of Wind Energy. WPAK, Gliwice. (In Polish)
  • 2. Chong W.T., Fazlizan A., Poh S.C. , Pan K.C., Hew W.P., Hsiao F.B. (2013). The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Applied Energy, Vol. 112, pp. 601-609.
  • 3. Lu H., Zeng, P., Lei L., Yang Y., Xu Y., Qian L. (2014). A smart segmented blade system for reducing weight of the wind turbine rotor. Energy Conversion and Management, Vol. 88, pp. 535-544.
  • 4. Duić N., Ban M., Perković L., Silva P., Kranjčević N. (2013). Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect. Applied Energy, Vol. 101, pp. 151-160.
  • 5. Islam M., Ting D. S.-K., Fartaj A. (2008). Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, Vol. 12, pp.1087-1109.
  • 6. Bhuyan S., Biswas A. (2014). Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Conversion and Management, Vol. 87, pp.859-867.
  • 7. Kabalci E. (2013). Design and analysis of hybrid renewable energy plant with solar and wind power. Energy Conversion and Management, Vol. 72, pp 51-59.
  • 8. Fedak W., Anweiler S., Ulbrich R., Jarosz B. (2017). The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources. Journal of Sustainable Development of Energy Water and Environment Systems-JSDEWES, Vol. 4, No. 4, pp. 579-589.
  • 9. Wzorek M., Tańczuk M. (2015). Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation. Waste Management & Research, Vol. 33, No. 8, pp. 704-714.
  • 10. Bishop J. D., Amaratunga G. A. (2008). Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados. Energy Conversion and Management, Vol. 49, No. 6, pp. 1652-1661.
  • 11. Peacock A. D., Jenkins D., Ahadzi M., Berry A., Turan S. (2008). Micro wind turbines in the UK domestic sector. Energy and Buildings, Vol. 40, No. 7, pp. 1324-1333.
  • 12. Li Q., Maeda T., Kamada Y., Murata J., Furukawa K., Yamamoto M. (2015). Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy, Vol. 90, pp. 784-795.
  • 13. Muller G., Jentsch M.F., Stoddart E. (2009). Vertical axis resistance type wind turbines for use in buildings. Renewable Energy, Vol. 34, pp.1407-1412.
  • 14. Jeżowiecka-Kabsch K., Szewczyk H. (2001). Mechanics of Fluid, Publishing House of Wroclaw University of Technology, Wroclaw. (in Polish)
  • 15. Menet J.-L. (2004). A double-step Savonius rotor for local production of electricity: a design study. Renewable Energy, Vol. 29, pp. 1843-1862.
  • 16. Al-Bahadly I. (2009). Building a wind turbine for rural home. Energy for Sustainable Development, Vol. 13, No. 3, pp. 159-165.
  • 17. Wenehenubun F., Saputra A., Sutanto H. (2015). An Experimental Study on the Performance of Savonius Wind Turbines Related With The Number Of Blades. Energy Procedia, Vol. 68, pp. 297-304.
  • 18. El-Baz A. R., Youssef K., Mohamed M. H. (2016). Innovative improvement of a drag wind turbine performance. Renewable Energy, Vol. 86, pp. 89-98.
  • 19. Ozgener O. (2006). A small wind turbine system (SWTS) application and its performance analysis. Energy Conversion and Management, Vol. 47, pp. 1326–1337.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43125c2d-5a87-4097-b3f0-92eb418ba124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.