PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ignition and Combustion Performance of the Primary Condensed-phase Combustion Products from Boron-based Fuel-rich Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary condensed-phase combustion products of a boron-based fuel-rich propellant were ignited using a high-power CO2 laser in a pressurized and windowed combustion chamber under variable pressure. The ignition and combustion performances were characterized using an ultraviolet-visible spectrometer and a high-speed camera. The experimental results showed that the combustion of the condensed-phase combustion products originate from the combustion of carbon, and boron may not take any part in the combustion process because of the formation of a thick boron oxide coating and agglomeration after the primary combustion process. Both particle size and the ingredients play an important role in the combustion reaction of the condensed-phase products. It was observed that a lower particle size and a higher boron carbide content are beneficial for the combustion reaction of the products; higher primary and secondary combustion pressures clearly improved the secondary combustion efficiency of the propellant in the combustion reaction.
Rocznik
Strony
448--460
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
autor
  • Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
autor
  • Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
autor
  • Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, P. R. China
Bibliografia
  • [1] Besser, H. L.; Strecker, R. Overview of Boron Ducted Rocket Development. Int. J. Energ. Mater. Chem. Propul. 1991, 2(1-6): 133-178.
  • [2] Fry, R. S. A Century of Ramjet Propulsion Technology Evolution. J. Propul. Power 2004, 20(1): 27-58.
  • [3] Gany, A; Timnat, Y. M. Advantages and Drawbacks of Boron-fueled Propulsion. Acta Astronaut. 1993, 29(3): 181-187.
  • [4] Liang, D.; Liu, J.; Xiao, J.; Xi, J.; Wang, Y.; Zhang, Y.; Zhou, J. Energy Release Properties of Amorphous Boron and Boron-Based Propellant Primary Combustion Products. Acta Astronaut. 2015, 112: 182-191.
  • [5] Vigot, C.; Cochet, A.; Guin, C. Combustion Behavior of Boron-Based Solid Propellants in a Ducted Rocket. Int. J. Energ. Mater. Chem. Propul. 1991, 2(1-6): 386-401.
  • [6] Liu, L. L., He, G. Q., Wang, Y. H., Hu, S. Q. Chemical Analysis of Primary Combustion Products of Boron-based Fuel-rich Propellant. RSC Advances 2015, 5: 101416-101426; DOI: 10.1039/C5RA13693H.
  • [7] Natan, B.; Netzer, D. W. Boron Carbide Combustion in Solid‐Fuel Ramjets Using Bypass Air. Part I: Experimental Investigation. Propellants Explos. Pyrotech. 1996, 21(6): 289-294.
  • [8] Natan, B.; Netzer, D. W. Boron Carbide Combustion in Solid‐Fuel Ramjets Using Bypass Air. Part II: Theoretical Analysis. Propellants Explos. Pyrotech. 1997, 22(1): 6-10.
  • [9] Domnich, V.; Reynaud, S.; Haber, R. A.; Chhowalla, M. Boron Carbide: Structure, Properties, and Stability under Stress. J. Am. Ceram. Soc. 2011, 94(11): 3605-3628.
  • [10] Liu, L.-L.; Liu, P.-J.; He, G.-Q. Ignition and Combustion Characteristics of Compound of Magnesium and Boron. J. Therm. Anal. Calorim. 2015, 121(3):1205-1212; DOI:10.1007/s10973-015-4653-6.
  • [11] Ao, W.; Wang, Y.; Li, H.; Xi, J.; Liu, J.; Zhou, J. Effect of Initial Oxide Layer on Ignition and Combustion of Boron Powder. Propellants Explos. Pyrotech. 2014, 39(2): 185-191.
  • [12] Veith, J.; Pfitzner, M. Combustion of Boron Particles in Premixed Methane/Air Flames. Propellants Explos. Pyrotech. 2016, 41(2): 260-266; DOI: 10.1002/prep.201500069.
  • [13] Ao, W.; Yang, W.; Wang, Y.; Zhou, J.; Liu, J.; Cen, K. Ignition and Combustion of Boron Particles at One to Ten Standard Atmosphere. J. Propul. Power 2014, 30(3): 760-764.
  • [14] Spalding, M. J.; Krier, H.; Burton, R. L. Boron Suboxides Measured during Ignition and Combustion of Boron in Shocked Ar/F/O2 and Ar/N2/O2 Mixtures. Combust. Flame 2000, 120(1): 200-210.
  • [15] Poret, J. C.; Sabatini, J. J. Comparison of Barium and Amorphous Boron Pyrotechnics for Green Light Emission. J. Energ. Mater. 2013, 31(1): 27-34.
  • [16] Hussmann, B.; Pfitzner, M. Extended Combustion Model for Single Boron Particles – Part I: Theory. Combust. Flame 2010, 157(4): 803-821.
  • [17] Hussmann, B.; Pfitzner, M. Extended Combustion Model for Single Boron Particles – Part II: Validation. Combust. Flame 2010, 157(4): 822-833.
  • [18] Eppler, R. A. Viscosity of Molten B2O3. J. Am. Ceram. Soc. 1966, 49(12): 679-680.
  • [19] Shpil’Rain, E. E.; Yakimovich, K. A.; Tsitsarkin, A. F. Investigation of the Surface Tension of Liquid Boron Oxide to 2000 Degrees C by the Cylinder Pulling Method. High Temp.-High Press. 1972, 4(1): 67-76.
  • [20] Meinköhn, D. Boron Particle Ignition and the Marangoni Effect. Combust. Sci. Technol. 2004, 176(9): 1493-1536.
  • [21] DeLuca, L. T.; Marchesi, E.; Spreafico, M.; Reina, A.; Maggi, F.; Rossettini, L.; Bandera, A.; Colombo, L. P. M.; Kosowski, B. M. Aggregation versus Agglomeration in Metallized Solid Rocket Propellants. Int. J. Energ. Mater. Chem. Propul. 2010, 9(1): 9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-431239a9-09e6-4c09-a961-79815ee9859a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.