PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid estimation of environmental radioactivity surrounding Xiangshan uranium deposits, Jiangxi province, Eastern China

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The surveys of terrestrial gamma dose rate, radon concentration indoor and in water and specific activity of radionuclides of soil were carried out in 14 villages and a town in Xiangshan uranium deposit and surrounding area, Jiangxi province, Eastern China, in 2017–2018, using a scintillator dosemeter, an ionization chamber and a high-purity germanium gamma spectrometer to study radiation status in these places after remediation. A radioactive hot spot was discovered in a village near the mining office, where specific activity of 238U, 226Ra, 232Th and 137Cs of soil was as high as 1433 ± 76 Bq/kg, 1210 ± 62 Bq/kg, 236 ± 13 Bq/kg and 17 ± 1.1 Bq/kg, respectively. The dose rate on a waste rock heap was about 2423 nGy/h. Approximately 50% of the houses in a village near the uranium mining site had radon concentrations that exceeded 160 Bq/m3 . There was a significant positive correlation between indoor radon concentration and outdoor gamma dose rate (R2 = 0.7876). The abnormal radon concentration was observed in a rising spring sample providing residents with tap water up to 127.1 Bq/l. Four tap water samples and three of five well water samples exceeded the limit of radon concentration of drinking water in China (11.1 Bq/l). The mean annual effective doses from gamma dose rate data were 0.86 mSv/y and 1.13 mSv/y for indoor radon. The study shows that there are some radioactively contaminated places surrounding the Xiangshan uranium mine. The local outdoor dose rate averages may be used to estimate local indoor radon concentrations.
Czasopismo
Rocznik
Strony
113--121
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • School of Earth Sciences and Resources China University of Geosciences (Beijing) Beijing, 100083, China
  • Beijing Research Institute of Chemical Engineering and Metallurgy Beijing, 101149, China
autor
  • School of Earth Sciences and Resources China University of Geosciences (Beijing) Beijing, 100083, China
autor
  • School of Earth Sciences and Resources China University of Geosciences (Beijing) Beijing, 100083, China
autor
  • School of Geophysics and Information Technology China University of Geosciences (Beijing) Beijing, 100083, China
Bibliografia
  • 1. Committee on the Biological Effects of Ionizing Radiations, National Research Council, National Academy of Sciences. (1999). The health effects of exposure to indoor radon. Washington: National Academy Press.
  • 2. UNSCEAR. (2000). Sources and effects of ionizing radiation. Vol. I: Sources. Vol. II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientifi c annexes. New York: United Nations.
  • 3. UNSCEAR. (2006). Sources-to-effects assessment for radon in homes and workplaces. Vienna: United Nations. Scientific Committee on the Effects of Atomic Radiation.
  • 4. Stegnar, P., Shishkov, I., & Burkitbayev, M. (2013). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in central Asia. J. Environ. Radioact., 123(3), 3–13. DOI: 10.1016/j.jenvrad.2012.12.005.
  • 5. Lespukh, E., Stegnar, P., & Yunusov, M. (2013a). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Tajikistan. J. Environ. Radioact., 126(4), 147–155. DOI: 10.1016/j.jenvrad.2013.07.019.
  • 6. Lespukh, E., Stegnar, P., & Usubalieva, A. (2013b). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Kyrgyzstan. J. Environ. Radioact., 123(3), 28–36. DOI: 10.1016/j.jenvrad.2012.11.013.
  • 7. Lind, O. C., Stegnar, P., & Tolongutov, B. (2013). Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. J. Environ. Radioact., 123(3), 37–49. DOI: 10.1016/j.jenvrad.2012.07.010.
  • 8. Carvalho, F. P., Madruga, M. J., & Reis, M. C. (2007). Radioactivity in the environment around past radium and uranium mining sites of Portugal. J. Environ. Radioact., 96, 39–46. DOI: 10.1016/j.jenvrad.2007.01.016.
  • 9. Tripathi, R. M., Sahoo, S. K., & Jha, V. N. (2008). Assessment of environmental radioactivity at uranium mining, processing and tailings management facility at Jaduguda, India. Appl. Radiat. Isot., 66(11), 1666–1670. DOI: 10.1016/j.apradiso.2007.12.019.
  • 10. Momčilović, M., Kovačević, J., & Dragović, S. (2010). Population doses from terrestrial exposure in the vicinity of abandoned uranium mines in Serbia. Radiat. Meas., 45(2), 225–230. DOI: 10.1016/j.radmeas.2010.01.035.
  • 11. Oyedele, J. A., Shimboyo, S., & Sitoka, S. (2010). Assessment of natural radioactivity in the soils of Rössing Uranium Mine and its satellite town in western Namibia, southern Africa. Nucl. Instrum. Meth. Phys. Res. Sect. A: Accel. Spectrom. Dect. Assoc. Equip., 619(1/3), 467–469.
  • 12. Araújo dos Santos Jr, J., dos Santos Amaral, R., Simones Cezar Menezes, R., Estevez Alvez, R. J., Marques do Nascimento Santos, J., Herrero Fernandez, Z., Dias Bezerra, J., da Silva, A., Rodriges Damascena, K. F., & de Almeida Maciel Neto, J. (2017). Influence of terrestrial radionuclides on environmental gamma exposure in a uranium deposit in Paraíba, Brazil. Ecotox. Environ. Safety, 141, 154–159. DOI: 10.1016/j.ecoenv.2017.02.004.
  • 13. Pan, Y., Li, Y., & Xue, J. (2009). Status and countermeasures for decommissioning of uranium mine and mill facilities in China. Radiat. Prot., 29(3), 167–171. (in Chinese with English abstract).
  • 14. Xu, L., Wang, Y., & LÜ, J. (2002). Radioactive contamination of the environment as a result of uranium production: a case study at the abandoned Lincang uranium mine, Yunnan Province, China. Science in China (Series B), 45(Suppl.), 11–19. (in Chinese with English abstract).
  • 15. Yang, Y., Wu, X., & Jiang, Z. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl. Radiat. Isot., 63(2), 255–259. DOI: 10.1016/j.apradiso.2005.02.011.
  • 16. Dai, M. (2006). Uranium resources potential and its prospecting direction in Jiangxi Province. East China Institute of Technology, 2006(Suppl.), 12–18. (in Chinese with English abstract).
  • 17. Liu, Y., Gu, L., & Hou, Z. (2002). Airborne radiometric survey. Geophys. Geochem. Explor., 26(4), 250–252. (in Chinese with English abstract).
  • 18. Zhang, W., Liu, D., & Li, Z. (2007). Comparative analysis of the erosion degree of deposits in the northwest and southeast parts of Xiangshan uranium ore field in Jiangxi. Geotectonica et Metallogenia, 31(3), 348–352. DOI: 10.3969/j.issn.1001-1552.2007.03.012. (in Chinese with English abstract).
  • 19. Zhang, W., & Li, Z. (2005). Metallogenetic characteristics and material source of Zoujiashan uranium deposit, Jiangxi Province. Geoscience, 19(3), 369–374.DOI: 10.3969/j.issn.1000-8527.2005.03.008. (in Chinese with English abstract).
  • 20. Sun, Z. (2004). Uranium sources of the Xiangshan uranium ore-fi eld: geochemical evidence. Acta Mineralogica Sinica, 24(1), 19–24. DOI: 10.3321/j.issn:1000-4734.2004.01.004. (in Chinese with English abstract).
  • 21. Tracerlab. (2017). ERS-RDM-2S Monitor for the determination of the Radon/Thoron-Gas- & Progenyconcentration Instruction-Manual Update Version – 2017.
  • 22. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. (2013). Determination of radionuclides in soil by gamma spectrometry. Beijing, China: Standard Press. (GB/T11743-2013). (in Chinese).
  • 23. US Environmental Protection Agency (US EPA). Radon in Water Sampling Program. EPA. (EERFMANUAL-78-1).
  • 24. Li, T., Wang, N., & Li, S. (2015). Preliminary investigation of radon concentration in surface water and drinking water in Shenzhen City, South China. Radiat. Prot. Dosim., 167(1/3), 59–64. DOI: 10.1093/rpd/ncv207.
  • 25. Wang, C., Liu, Y., & Liu, F. (2012). Effects of ventilation rate on concentrations of indoor radon and its progenies. Radiat. Prot., 32(1), 60–64 (in Chinese with English abstract).
  • 26. Sang, B., He, Q., & Wang, Z. (2003). Studies of indoor action level of radon in China. Chin. J. Radiol. Med. Prot., 23(6), 462–465. (in Chinese with English abstract).
  • 27. Wang, C., Pan, Z., & Liu, S. (2014). Investigation on indoor radon levels in some parts of China. Radiat. Prot., 34(2), 65–73. (in Chinese with English abstract).
  • 28. Bossew, P., Cinelli, G., & Hernández-Ceballos, M. (2016). Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate. J. Environ. Radioact., 166(Pt.2), 296–308.
  • 29. Stojanovska, Z., Boev, B., & Zunic, Z. S. (2016). Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments. Radiat. Environ. Biophys., 55, 171–183.
  • 30. UNSCEAR. (1993). Sources and effects of ionizing radiation. Vol. I: Sources; Vol. II: Effects. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with scientific annexes. New York: United Nations.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-430c41a6-c574-48d6-8dd4-66e138a4899e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.