PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of magnetic water on properties of slag-based geopolymer composites incorporating ceramic tile waste from construction and demolition waste

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the effect of magnetic water (MW) on the properties of slag-based geopolymer composites (SGCs) incorporating ceramic tile waste (CTW) from construction and demolition waste (CDW). The presented study consists of two stages. In the first stage, reference mortars without additives were produced, and optimum parameters for molarity, curing temperature and curing time were determined. Tap water (TW) was used as mixing water, and blast furnace slag (BFS) was used as a precursor in SGCs in this stage. SGCs were produced using different alkali activator concentrations (12, 14 and 16 M) and were cured for either 24 or 48 h in an oven at ranging from 60 to 110 °C. Ultrasonic pulse velocity (Upv), flexural strength (ffs), and compressive strength (fcs) tests were performed on the produced SGCs. The results of these tests indicated that optimum paramaters for molarity, curing temperature and curing time parameters were determined to be 16 M, 100 ℃ and 24 h, respectively. Then, TW and MW were used as mixing water, and BFS and CTW were used as precursors in the second stage. At this stage, SGCs were produced using 16 M and cured in an oven at 100 ℃ for 24 h. In the mixtures, CTW was used by substituting 10, 20, 30 and 40% by weight of BFS. In the second stage, workability, Upv, ffs, and fcs tests as well as microstructure analyses, were performed on the produced SGCs. Microstructure analyses were performed with scanning electron microscopy (SEM). According to the results, Upv, ffs, and fcs increased compared to the reference SGCs when 10% of CTW was used. Additionally, when MW was used as mixing water, there were increases in workability, Upv, ffs, and fcs results compared to those produced with TW. From SEM analyses, it has been observed that MW accelerates the polymerization process of SGCs containing CTW and reduces the pore size of SGCs. As a result, it has been determined that MW can improve the fresh and hardened state properties and microstructures of SGCs containing CTW.
Rocznik
Strony
art. no. e107, 2023
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, Kırıkkale University, 71451 Kırıkkale, Turkey
  • Department of Civil Engineering, Tokat Gaziosmanpasa University, 60150 Tokat, Turkey
autor
  • Department of Civil Engineering, Kırıkkale University, 71451 Kırıkkale, Turkey
  • Department of Civil Engineering, Kırıkkale University, 71451 Kırıkkale, Turkey
Bibliografia
  • 1. Celikten S, Sarıdemir M, Deneme IO. Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Constr Build Mater. 2019;217:50-61. https://doi.org/10.1016/j.conbuldmat.2019.05.055.
  • 2. Kermeli K, Edelenbosch OY, Crijns-Graus W, van Ruijven BJ, Mima S, van Vuuren DP, Worrell E. The scope for better industry representation in longterm energy models: modeling the cement industry. Appl Energy. 2019;240:964-85. https://doi.org/10.1016/j.apenergy.2019.01.252.
  • 3. Xie T, Ozbakkaloglu T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int. 2015;41:5945-58. https://doi.org/10.1016/j.ceramint.2015.01.031.
  • 4. Mahmoodi O, Siad H, Lachemi M, Dadsetan S, Sahmaran M. Development and characterization of binary recycled ceramic tile and brick wastes-based geopolymers at ambient and high temperatures. Constr Build Mater. 2021;301:124138. https://doi.org/10.1016/j.conbuildmat.2021.124138.
  • 5. Kou R, Guo MZ, Han L, Li JS, Li B, Chu H, Jiang L, Wang L, Jin W, Poon CS. Recycling sediment, calcium carbide slag and ground granulated blast-furnace slag into novel and sustainable cementitious binder for production of eco-friendly mortar. Constr Build Mater. 2021;305:124772. https://doi.org/10.1016/j.conbuildmat.2021.124772.
  • 6. Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim. 1991;37(8):1633-56. https://doi.org/10.1007/bf01912193.
  • 7. Shoaei P, Musaeei HR, Mirlohi F, Zamanabadi SN, Ameri F, Bahrami N. Waste ceramic powder-based geopolymer mortars: effect of curing temperature and alkaline solution-to-binder ratio. Constr Build Mater. 2019;227:116686. https://doi.org/10.1016/j.conbuildmat.2019.116686.
  • 8. Heath A, Paine K, McManus M. Minimizing the global warming potential of clay based geopolymers. J Cleaner Prod. 2014;78:75-83. https://doi.org/10.1016/j.jclepro.2014.04.046.
  • 9. Huseien GF, Mirza J, Ismail M, Ghoshal S, Hussein AA. Geopolymer mortars as sustainable repair material: a comprehensive review. Renew Sustain Energy Rev. 2017;80:54-74. https://doi.org/10.1016/j.rser.2017.05.076.
  • 10. Huseien GF, Sam ARM, Mirza J, Tahir MM, Asaad MA, Ismail M, Shah KW. Waste ceramic powder incorporated alkali-activated mortars exposed to elevated temperatures: performance evaluation. Constr Build Mater. 2018;187:307-17. https://doi.org/10.1016/j.conbuildmat.2018.07.226.
  • 11. Huseien GF, Mirza J, Ismail M, Ghoshal S, Ariffin MAM. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Eng J. 2018;9(4):1557-66. https://doi.org/10.1016/j.asej.2016.11.011.
  • 12. Hossain MM, Karim MR, Hossain MK, Islam MN, Zain MFM. Durability of mortar and concrete containing alkali-activated binder with pozzolans: a review. Constr Build Mater. 2015;93:95-109. https://doi.org/10.1016/j.conbuildmat.2015.05.094.
  • 13. Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125-30. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
  • 14. Wu H, Zuo J, Zillante G, Wang J, Yuan H. Construction and demolition waste research: a bibliometric analysis. Archit Sci Rev. 2019;62(4):354-65. https://doi.org/10.1080/00038628.2018.1564646.
  • 15. Wu H, Zuo J, Yuan H, Zillante G, Wang J. A review of performance assessment methods for construction and demolition waste management. Resour Conserv Recycl. 2019;150:104407. https://doi.org/10.1016/j.resconrec.2019.104407.
  • 16. Mahmoodi O, Siad H, Lachemi M, Dadsetan S, Sahmaran M. Development of ceramic tile waste geopolymer binders based on pre-targeted chemical ratios and ambient curing. Constr Build Mater. 2020;258:120297. https://doi.org/10.1016/j.conbuildmat.2020.120297.
  • 17. Reig L, Tashima MM, Soriano L, Borrachero MV, Monzo J, Paya J. Alkaline activation of ceramic waste materials. Waste Biomass Valor. 2013;4(4):729-36. https://doi.org/10.1007/s12649-013-9197-z.
  • 18. Mahmoodi O, Siad H, Lachemi M, Dadsetan S, Sahmaran M. Development of optimized binary ceramic tile and concrete wastes geopolymer binders for in-situ applications. J Build Eng. 2021;43:102906. https://doi.org/10.1016/j.jobe.2021.102906.
  • 19. Wang WC, Wang HY, Lo MH. The engineering properties of alkali-activated slag pastes exposed to high temperatures. Construct Build Mater. 2014;68:409-15. https://doi.org/10.1016/j.conbuildmat.2014.06.016.
  • 20. Sarkar M, Dana K. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Int. 2021;47(3):3473-83. https://doi.org/10.1016/j.ceramint.2020.09.191.
  • 21. Huseien GF, Sam ARM, Shah KW, Asaad MA, Tahir MM, Mirza J. Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Constr Build Mater. 2019;214:355-68. https://doi.org/10.1016/j.conbuildmat.2019.04.154.
  • 22. Rashad AM, Ezzat M. A preliminary study on the use of magnetic, Zamzam, and sea water as mixing water for alkali-activated slag pastes. Constr Build Mater. 2019;207:672-8. https://doi.org/10.1016/j.conbuildmat.2019.02.162.
  • 23. Ghorbani S, Gholizadeh M, Brito J. Effect of magnetized water on the mechanical and durability properties of concrete block pavers. Materials. 2018. https://doi.org/10.3390/ma11091647.
  • 24. Su N, Wu YH, Mar CY. Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cem Concr Res. 2000;30(4):599-605. https://doi.org/10.1016/S0008-8846(00)00215-5.
  • 25. Wei H, Wang Y, Luo J. Influence of magnetic water on early-age shrinkage cracking of concrete. Constr Build Mater. 2017;147:91-100. https://doi.org/10.1016/j.conbuildmat.2017.04.140.
  • 26. Şimşek O, Aruntaş HY, Demir İ, Yaprak H, Yazıcıoğlu S. Investigation of the effect of seawater and sulfate on the properties of cementitious composites containing silica fume. SILICON. 2022;14(2):663-75. https://doi.org/10.1007/s12633-021-01052-0.
  • 27. Su N, Wu CF. Effect of magnetic field treated water on mortar and concrete containing fly ash. Cem Concr Compos. 2003;25(7):681-8. https://doi.org/10.1016/S0958-9465(02)00098-7.
  • 28. Ghorbani S, Ghorbani S, Tao Z, De Brito J, Tavakkolizadeh M. Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr Build Mater. 2019;197:280-90. https://doi.org/10.1016/j.conbuildmat.2018.11.160.
  • 29. Xiao-Feng P, Bo D. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Phys B Condens Matter. 2008;403(19-20):3571-7. https://doi.org/10.1016/j.physb.2008.05.032.
  • 30. Esmaeilnezhad E, Choi HJ, Schaffie M, Gholizadeh M, Ranjbar M. Characteristics and applications of magnetized water as a green technology. J Cleaner Prod. 2017;161:908-12. https://doi.org/10.1016/j.jclepro.2017.05.166.
  • 31. Ghorbani S, Mohammadi-Khatami M, Ghorbani S, Elmi A, Farzan M, Soleimani V, Negahban M, Tam VWY, Tavakkolizadeh M. Effect of magnetized water on the fresh, hardened and durability properties of mortar mixes with marble waste dust as partial replacement of cement. Constr Build Mater. 2021;267:121049. https://doi.org/10.1016/j.conbuildmat.2020.121049.
  • 32. Gholhaki M, Kheyroddin A, Hajforoush M, Kazemi M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr Build Mater. 2018;158:173-80. https://doi.org/10.1016/j.conbuildmat.2017.09.135.
  • 33. Barham WS, Albiss B, Latayfeh O. Influence of magnetic field treated water on the compressive strength and bond strength of concrete containing silica fume. J Build Eng. 2021;33:101544. https://doi.org/10.1016/j.jobe.2020.101544.
  • 34. Esfahani AR, Reisi M, Mohr B. Magnetized water effect on compressive strength and dosage of superplasticizers and water in self-compacting concrete. J Mater Civ Eng. 2018;30(3):04018008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002174.
  • 35. Gholizadeh M, Arabshahi H. The effect of magnetic water on strength parameters of concrete. J Eng Technol Res. 2011;3(3):77-81.
  • 36. TS EN 196-1. Methods of testing cement - part 1: determination of strength. Ankara: Turkish Standard Institution; 2016.
  • 37. ASTM C989/C989M-18a. Standard specification for slag cement for use in concrete and mortars. West Conshohocken: ASTM International; 2019.
  • 38. TS EN 12350-5. Testing fresh concrete - part 5: flow table test. Ankara: Turkish Standard Institution; 2019.
  • 39. ASTM C597-16. Standard test method for pulse velocity through concrete. West Conshohocken: ASTM International; 2016.
  • 40. Atabey İİ, Karahan O, Bilim C, Atiş CD. The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Constr Build Mater. 2020;264:120268. https://doi.org/10.1016/j.conbuildmat.2020.120268.
  • 41. Celikten S, Işıkdağ B. Properties of geopolymer mortars derived from ground calcined perlite and NaOH solution. Eur J Environ Civ Eng. 2021. https://doi.org/10.1080/19648189.2021.1879939.
  • 42. Bing-hui M, Zhu H, Xue-min C, Yan H, Si-yu G. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci. 2014;99:144-8. https://doi.org/10.1016/j.clay.2014.06.024.
  • 43. Guo X, Shi H, Dick WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos. 2010;32(2):142-7. https://doi.org/10.1016/j.cemconcomp.2009.11.003.
  • 44. Ozturk ZB, Atabey İİ. Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste. Ceram Int. 2022;48(9):12932-44. https://doi.org/10.1016/j.ceramint.2022.01.166.
  • 45. Saxena R, Gupta T. Assessment of mechanical, durability and microstructural properties of geopolymer concrete containing ceramic tile waste. J Mater Cycles Waste Manag. 2022;24:725-42. https://doi.org/10.1007/s10163-022-01353-5.
  • 46. Alakara EH, Nacar S, Sevim O, Korkmaz S, Demir I. Determination of compressive strength of perlite-containing slag-based geopolymers and its prediction using artificial neural network and regression-based methods. Constr Build Mater. 2022;359:129518. https://doi.org/10.1016/j.conbuildmat.2022.129518.
  • 47. Nasvi MMC, Gamage RP, Jay S. Geopolymer as well cement and the variation of its mechanical behavior with curing temperature. Greenhouse Gas Sci Technol. 2012;2(1):46-58. https://doi.org/10.1002/ghg.39.
  • 48. Huseien GF, Ismail M, Tahir MM, Mirza J, Khalid NHA, Asaad MA, Husein AA, Sarbini NN. Synergism between palm oil fuel ash and slag: Production of environmental-friendly alkali activated mortars with enhanced properties. Constr Build Mater. 2018;170:235-44. https://doi.org/10.1016/j.conbuildmat.2018.03.031.
  • 49. Jouzdani BE, Reisi M. Effect of magnetized water characteristics on fresh and hardened properties of self-compacting concrete. Constr Build Mater. 2020;242:118196. https://doi.org/10.1016/j.conbuildmat.2020.118196.
  • 50. Sevim O, Demir İ, Alakara EH, Guzelkucuk S, Bayer İR. The effect of magnetized water on the fresh and hardened properties of slag/fly ash-based cementitious composites. Buildings. 2023;13(2):271. https://doi.org/10.3390/buildings13020271.
  • 51. Mangi SA, Raza MS, Khahro SH, Qureshi AS, Kumar R. Recycling of ceramic tiles waste and marble waste in sustainable production of concrete: a review. Environ Sci Pollut Res. 2022;29:1-22. https://doi.org/10.1007/s11356-021-18105-x.
  • 52. Salehi H, Mazloom M. An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water. Arch Civ Mech Eng. 2019;19(3):803-19. https://doi.org/10.1016/j.acme.2018.10.008.
  • 53. Xu K, Huang W, Zhang L, Fu S, Chen M, Ding S, Han B. Mechanical properties of low-carbon ultrahigh-performance concrete with ceramic tile waste powder. Constr Build Mater. 2021;287:123036. https://doi.org/10.1016/j.conbuildmat.2021.123036.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-430403e7-f88d-43b4-904d-aa0bdd69c101
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.