Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the rapid development of the wind energy industry, there is an increasing concern about operation safety and reliability of high-strength wind turbine bolts. The aim of this paper is to monitor the strain change around the cracks in wind turbine bolts by means of fiber Bragg grating (FBG) sensors for crack detection. Firstly, the strain distributions of wind turbine bolts’ cracks with different locations and angles in the service condition are simulated using finite element analysis (FEA). Then, three-point grating string FBG sensors were pasted on the surface of wind turbine bolts with fatigue cracks to monitor the strain changes around the cracks in real time. By analysing the monitored strain data elaborately, the location of the crack on the bolt surface was successfully detected by identifying the location of the maximum strain detected by FBG sensors. In addition, the strain distributions in the vicinity area of the crack at different angles (0˚, 45˚ and 90˚) were also monitored and analysed in depth. The different types of crack angles could be distinguished based on of different strain distribution of the vicinity of the crack tip at different angles. The experimental results show that the FBG sensing technology has a high degree of sensitivity and accuracy in crack detection of high-strength wind turbine bolts.
Czasopismo
Rocznik
Tom
Strony
511--528
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
autor
- Yancheng Institute of Supervision & Inspection of Product Quality, Yancheng 224056, China
autor
- Yancheng Institute of Supervision & Inspection of Product Quality, Yancheng 224056, China
autor
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China
autor
- School of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, China
autor
- School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
Bibliografia
- [1] Ma, L., Kong, X., Liu, X., Abdelbaky, M. A., Besheer, A. H., Wang, M., & Lee, K. Y. (2023). Offshore wind power generation system control using robust economic MPC scheme. Ocean Engineering, 283, 115178. https://doi.org/10.1016/j.oceaneng.2023.115178
- [2] Ran, M., Huang, J., Qian, W., Zou, T., & Ji, C. (2023). EMD-based gray combined forecasting model - Application to long-term forecasting of wind power generation. Heliyon, 9(7), e18053. https://doi.org/10.1016/j.heliyon.2023.e18053
- [3] Dziadak, B., Makowski, Ł., & Michalski, A. (2016). Survey of energy harvesting systems for wireless sensor networks in environmental monitoring. Metrology and Measurement Systems, 23(4), 495-512. https://doi.org/10.1515/mms-2016-0053
- [4] Sun, L., Yin, J., & Bilal, A. R. (2023). Green financing and wind power energy generation: Empirical insights from China. Renewable Energy, 206, 820-827. https://doi.org/10.1016/j.renene.2023.02.018
- [5] Liu, R., Dan, B., Zhou, M., & Zhang, Y. (2020). Coordinating contracts for a wind-power equipment supply chain with joint efforts on quality improvement and maintenance services. Journal of Cleaner Production, 243, 118616. https://doi.org/10.1016/j.jclepro.2019.118616
- [6] Zheng, D., Guo, H., Zhang, S., & Liu, Y. (2023). Study on fatigue performance of double cover plate through-core bolted joint of rectangular concrete-filled steel tube bundle wind turbine towers. Journal of Constructional Steel Research, 203, 107830. https://doi.org/10.1016/j.jcsr.2023.107830
- [7] Stałowska, P., Suchocki, C., & Zagubień, A. (2023). Application of terrestrial laser scanning measurements for wind turbine blade condition surveying. Metrology and Measurement Systems, 30(3), 403-422. https://doi.org/10.24425/mms.2023.146419
- [8] Braithwaite, J., Iñigo Gómez Goenaga, Tafazzolimoghaddam, B., & Mehmanparast, A. (2020). Sensitivity analysis of friction and creep deformation effects on preload relaxation in offshore wind turbine bolted connections. Applied Ocean Research, 101, 102225. https://doi.org/10.1016/j.apor.2020.102225
- [9] Wagle, S., & Kato, H. (2009). Ultrasonic wave intensity reflected from fretting fatigue cracks at bolt joints of aluminum alloy plates. NDT&E International, 42(8), 690-695. https://doi.org/10.1016/j.ndteint.2009.06.002
- [10] Zhu, J. Z., Zhang, C. S., Feng, F. Z., Min, Q. X., & Xu, C. (2016). Study on probability of detection for fatigue cracks in sonic infrared imaging. Infrared Physics Technology, 77, 296-301. https://doi.org/10.1016/j.infrared.2016.06.012
- [11] Hasni, H., Jiao, P., Alavi, A. H., Lajnef, N., & Masri, S. F. (2018). Structural health monitoring of steel frames using a network of self-powered strain and acceleration sensors: A numerical study. Automation in Construction, 85, 344-357. https://doi.org/10.1016/j.autcon.2017.10.022
- [12] Liu, M., Yang, X., Song, H., Cai, Q., & Li, P. (2022). Single-peak fitting based on wavelength recognition in FBGs spectra under quadratic strain distribution. Optical Fiber Technology, 74, 103136. https://doi.org/10.1016/j.yofte.2022.103136
- [13] Chilelli, S. K., Schomer, J. J., & Dapino, M. J. (2019). Detection of crack initiation and growth using fiber Bragg grating sensors embedded into metal structures through ultrasonic additive manufacturing. Sensors, 19(22), 4917. https://doi.org/10.3390/s19224917
- [14] Mieloszyk, M., & Ostachowicz, W. (2017). An application of Structural Health Monitoring system based on FBG sensors to offshore wind turbine support structure model. Marine Structures, 51, 65-86. https://doi.org/10.1016/j.marstruc.2016.10.006
- [15] Alamandala, S., Prasad, R. S., Pancharathi, R. K., Pavan, V. D. R., & Kishore, P. (2021). Study on bridge weigh in motion (BWIM) system for measuring the vehicle parameters based on strain measurement using FBG sensors. Optical Fiber Technology, 61, 102440. https://doi.org/10.1016/j.yofte.2020.102440
- [16] Ferro, C. G., Aimasso, A., Bertone, M., Sanzo, N., Dalla Vedova, M. D. L., & Maggiore, P. (2023). Experimental development and evaluation of a fiber Bragg grating-based outside air temperature sensor for aircraft applications. Transportation Engineering, 14, 100214. https://doi.org/10.1016/j.treng.2023.100214
- [17] Slah, R. K., Kumar, A., Gautam, A., & Rajak, V. K. (2022). Temperature independent FBG based displacement sensor for crack detection in civil structures. Optical Fiber Technology, 74, 103137. https://doi.org/10.1016/j.yofte.2022.103137
- [18] Dai, T. T., Jia, Z. G., Ren, L., & Li, Y. T. (2022). Design and experimental study on FBG-based crack extension monitoring sensor. Optical Fiber Technology, 71, 102946. https://doi.org/10.1016/j.yofte.2022.102946
- [19] Bao, X., Wang, Z., Fu, D., Shi, C., Iglesias, G., Cui, H., & Sun, Z. (2022). Machine learning methods for damage detection of thermoplastic composite pipes under noise conditions. Ocean Engineering, 248, 110817. https://doi.org/10.1016/j.oceaneng.2022.110817
- [20] Jin, X., Yuan, S. F., & Chen, J. (2019). On crack propagation monitoring by using reflection spectra of AFBG and UFBG sensors. Sensors and Actuators A: Physical, 285, 491-500. https://doi.org/10.1016/j.sna.2018.11.052
- [21] Zhang, W., Zhang, M., Lan, Y., Zhao, Y., & Dai, W. (2020). Detection of crack locations in aluminum alloy structures using FBG sensors. Sensors, 20(2), 347. https://doi.org/10.3390/s2002034
- [22] Sun, L. Y., Liu, C. C., Jiang, M. S., Zhang, L., Zhang, F. Y., Sui, Q. M., & Jia, L. (2021). Fatigue Crack Prediction Method for Aluminum Alloy Based on Fiber Bragg Grating Array. Chinese Journal of Lasers, 48(13), 1306003. https://doi.org/10.3788/CJL202148.1306003
- [23] Yazdizadeh, Z., Marzouk, H., & Hadianfard, M. A. (2017). Monitoring of concrete shrinkage and creep using Fiber Bragg Grating sensors. Construction and Building Materials, 137, 505-512. https://doi.org/10.1016/j.conbuildmat.2017.01.084
- [24] Yao, Y., Tung, S. T. E., & Glisic, B. (2014). Crack detection and characterization techniques - An overview. Structural Control and Health Monitoring, 21(12), 1387-1413. https://doi.org/10.1002/stc.1655
- [25] Buchukuri, T., Chkadua, O., & Natroshvili, D. (2021). Mixed- and crack-type dynamical problems of electro-magneto-elasticity theory. Georgian Mathematical Journal, 28(4), 533-553. https://doi.org/10.1515/gmj-2020-2051
- [26] Wang, H., Liu, X., Wang, X., & Wang, Y. (2019). Numerical method for estimating fatigue crack initiation size using elastic-plastic fracture mechanics method. Applied Mathematical Modelling, 73, 365-377. https://doi.org/10.1016/j.apm.2019.04.010
- [27] Zhao, H., Zeng, X., Chen, L., Pang, H., & Kou, H. (2020). Weight function solution of stress intensity factors for delayed hydride cracking of zirconium alloys. Journal of Nuclear Materials, 539, 152206. https://doi.org/10.1016/j.jnucmat.2020.152206
- [28] Ayatollahi, M. R., Bahrami, B., Mirzaei, A. M., & Yahya, M. Y. (2019). Effects of support friction on mode I stress intensity factor and fracture toughness in SENB testing. Theoretical and Applied Fracture Mechanics, 103, 102288. https://doi.org/10.1016/j.tafmec.2019.102288
- [29] Verma, V. K., Gopalakrishnan, C. K., Hamada, S., Yokoi, T., & Noguchi, H. (2021). Effect of strain localization on fatigue properties of precipitation-hardened steel with an arbitrarily length crack. International Journal of Fatigue, 143, 106017. https://doi.org/10.1016/j.ijfatigue.2020.106017
- [30] Hong, C., Yang, Q., Sun, X., Chen, W., & Han, K. (2021). A theoretical strain transfer model between optical fiber sensors and monitored substrates. Geotextiles and Geomembranes, 49(6), 1539-1549. https://doi.org/10.1016/j.geotexmem.2021.07.003
- [31] Isah, B. W., Mohamad, H., & Ahmad, N. R. (2021). Rock stiffness measurements fibre Bragg grating sensor (FBGs) and the effect of cyanoacrylate and epoxy resin as adhesive materials. Ain Shams Engineering Journal, 12(2), 1677-1691. https://doi.org/10.1016/j.asej.2020.09.007
- [32] Tian, H., Zhou, Z., Li, B., & Jiang, C. (2023). Effect of strain gradient on the stress-strain relationship of FRP-confined ultra-high performance concrete. Composite Structures, 304, 116371. https://doi.org/10.1016/j.compstruct.2022.116371
- [33] Fu, G., Zhou, S., & Qi, L. (2020). On the strain gradient elasticity theory for isotropic materials. International Journal of Engineering Science, 154, 103348. https://doi.org/10.1016/j.ijengsci.2020.103348
Uwagi
1. This work was supported by the Jiangsu Provincial Market Regulation Administration Science and Technology Project (No. KJ2022049 and No. KJ2024092), and by the Postgraduate Research & Practice Innovation Program of Yancheng Institute of Technology (No. KYCX_XZ050).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43035e6e-b7f0-4958-8dbe-b9bebac918bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.