PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Peculiarities in optical response of hybrid-barrier GaSb/InAs/AlSb resonant tunneling diode structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present comprehensive investigation of the optical properties of hybrid-barrier GaSb-based resonant tunneling structures, containing a bulk-like GaInAsSb absorption layer and two asymmetric type II GaSb/InAs/AlSb quantum wells. Methods of optical spectroscopy by means of Fourier-transformed photoluminescence and photoreflectance are employed to probe optical transitions in this complex multilayer system. Based on the comparison between the absorption-like and emission-like spectra (also in function of temperature) confronted with band structure calculations four main transitions could be resolved and identified. For one of them, there has been observed unusually strong linear polarization dependence never reported in structures of that kind. It has been interpreted as related to a transition at the GaSb/GaInAsSb interface, for which various scenarios causing the polarization selectivity are discussed.
Czasopismo
Rocznik
Strony
171--180
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
  • Laboratoire National des Champs Magnétiques Intenses, LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, Univ.Toulouse 3, INSA-T, Grenoble and Toulouse, France
autor
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
autor
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
autor
  • Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
autor
  • Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
autor
  • Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
autor
  • Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
autor
  • Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
  • SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, United Kingdom
autor
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
Bibliografia
  • [1] GHORBANI R., SCHMIDT F.M., ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes, Optics Express 25(11), 2017, pp. 12743–12752, DOI:10.1364/OE.25.012743.
  • [2] DONG L., LI C., SANCHEZ N.P., GLUSZEK A.K., GRIFFIN R.J., TITTEL F.K., Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser, Applied Physics Letters 108(1), 2016, article 011106, DOI:10.1063/1.4939452.
  • [3] KLUCZYNSKI P., JAHJAH M., NÄHLE L., AXNER O., BELAHSENE S., FISCHER M., KOETH J., ROUILLARD Y., WESTBERG J., VICET A., LUNDQVIST S., Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range, Applied Physics B 105, 2011, pp. 427–434, DOI:10.1007/s00340-011-4645-6.
  • [4] LUNDQVIST S., KLUCZYNSKI P., WEIH R., VON EDLINGER M., NÄHLE L., FISCHER M., BAUER A., HÖFLING S., KOETH J., Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm, Applied Optics 51(25), 2012, pp. 6009–6013, DOI:10.1364/AO.51.006009.
  • [5] DONG L., YU Y., LI C., SO S., TITTEL F.K., Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell, Optics Express 23(15), 2015, pp. 19821–19830, DOI:10.1364/OE.23.019821.
  • [6] VILLARES G., HUGI A., BLASER S., FAIST J., Dual-comb spectroscopy based on quantum-cascade-laser frequency combs, Nature Communications 5, 2014, article 5192, DOI:10.1038/ncomms6192.
  • [7] FAIST J., CAPASSO F., SIVCO D.L., SIRTORI C., HUTCHINSON A.L., CHO A.Y., Quantum cascade laser, Science 264(5158), 1994, pp. 553–556, DOI:10.1126/science.264.5158.553.
  • [8] MEYER J.R., HOFFMAN C.A., BARTOLI F.J., RAM-MOHAN L.R., Type-II quantum-well lasers for the mid-wavelength infrared, Applied Physics Letters 67(6), 1995, pp. 757–759, DOI:10.1063/1.115216.
  • [9] YANG R.Q., Infrared laser based on intersubband transitions in quantum wells, Superlattices and Microstructures 17(1), 1995, pp. 77–83, DOI:10.1006/spmi.1995.1017.
  • [10] LI J.V., YANG R.Q., HILL C.J., CHUANG S.L., Interband cascade detectors with room temperature photovoltaic operation, Applied Physics Letters 86(10), 2005, article 101102, DOI:10.1063/1.1875758.
  • [11] HARRER A., SZEDLAK R., SCHWARZ B., MOSER H., ZEDERBAUER T., MACFARLAND D., DETZ H., ANDREWS A.M., SCHRENK W., LENDL B., STRASSER G., Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing, Scientific Reports 6, 2016, article 21795, DOI:10.1038/srep21795.
  • [12] PFENNING A., HARTMANN F., LANGER F., KAMP M., HÖFLING S., WORSCHECH L., Sensitivity of resonant tunneling diode photodetectors, Nanotechnology 27(35), 2016, article 355202, DOI:10.1088/0957-4484/27/35/355202.
  • [13] ROTHMAYR F., PFENNING A., KISTNER C., KOETH J., KNEBL G., SCHADE A., KRUEGER S., WORSCHECH L., HARTMANN F., HÖFLING S., Mid-infrared GaSb-based resonant tunneling diode photodetectors for gas sensing applications, Applied Physics Letters 112(16), 2018, article 161107, DOI:10.1063/1.5025531.
  • [14] PFENNING A., HARTMANN F., WEIH R., EMMERLING M., WORSCHECH L., HÖFLING S., P-type doped AlAsSb/GaSb resonant tunneling diode photodetector for the mid-infrared spectral region, Advanced Optical Materials 6(24), 2018, article 1800972, DOI:10.1002/adom.201800972.
  • [15] NIE B., HUANG J., ZHAO C., HUANG W., ZHANG Y., CAO Y., MA W., InAs/GaSb superlattice resonant tunneling diode photodetector with InAs/AlSb double barrier structure, Applied Physics Letters 114(5), 2019, article 053509, DOI:10.1063/1.5079923.
  • [16] PFENNING A., HARTMANN F., REBELLO SOUSA DIAS M., LANGER F., KAMP M., CASTELANO L.K., LOPEZ-RICHARD V., MARQUES G.E., HÖFLING S., WORSCHECH L., Photocurrent-voltage relation of resonant tunneling diode photodetectors, Applied Physics Letters 107(8), 2015, article 081104, DOI:10.1063/1.4929424.
  • [17] ZIA N., VIHERIÄLÄ J., KOIVUSALO E., VIRTANEN H., AHO A., SUOMALAINEN S., GUINA M., GaSb super-luminescent diodes with broadband emission at 2.55 μm, Applied Physics Letters 112(5), 2018, article 051106, DOI:10.1063/1.5015974.
  • [18] HARTMANN F., PFENNING A., KNEBL G., WEIH R., BADER A., EMMERLING M., KAMP M., HÖFLING S., WORSCHECH L., In Antimonide-based resonant tunneling photodetectors for mid infrared wavelength light detection, Proceedings of SPIE 10403, 2017, article 1040306, DOI:10.1117/12.2274917.
  • [19] BIRNER S., ZIBOLD T., ANDLAUER T., KUBIS T., SABATHIL M., TRELLAKIS A., VOGL P., Nextnano: general purpose 3-D simulations, IEEE Transactions on Electron Devices 54(9), 2007, pp. 2137–2142, DOI:10.1109/TED.2007.902871.
  • [20] VURGAFTMAN I., MEYER J.R., RAM-MOHAN L.R., Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89(11), 2001, pp. 5815–5875, DOI:10.1063/1.1368156.
  • [21] WEN’GANG B., AIZHEN L., Band gap energy and its temperature dependence of GaInAsSb quaternary alloy grown by molecular beam epitaxy, Chinese Physics Letters 9(1), 1992, pp. 53–56, DOI:10.1088/0256-307X/9/1/015.
  • [22] PLATONOV A.V., KOCHERESHKO V.P., IVCHENKO E.L., MIKHAILOV G.V., YAKOVLEV D.R., KEIM M., OSSAU W., WAAG A., LANDWEHR G., Giant electro-optical anisotropy in type-II heterostructures, Physical Review Letters 83(17), 1999, pp. 3546–3549, DOI:10.1103/PhysRevLett.83.3546.
  • [23] SHEN J., GORONKIN H., DOW J.D., REN S.Y., Tamm states and donors at InAs/AlSb interfaces, Journal of Applied Physics 77(4), 1995, pp. 1576–1581, DOI:10.1063/1.358910.
  • [24] WU S., CHEN Y., YU J., GAO H., JIANG C., HUANG J., ZHANG Y., WEI Y., MA W., In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces, Nanoscale Research Letters 8, 2013, article 298, DOI:10.1186/1556-276X-8-298.
  • [25] IVCHENKO E.L., NESTOKLON M.O., Lateral optical anisotropy of type-II interfaces in the tight-binding approach, Physical Review B 70(23), 2004, article 235332, DOI:10.1103/PhysRevB.70.235332.
  • [26] DONETSKY D., ANIKEEV S., BELENKY G., LURYI S., WANG C.A., NICHOLS G., Reduction of interfacial recombination in GaInAsSb/GaSb double heterostructures, Applied Physics Letters 81(25), 2002, pp. 4769–4771, DOI:10.1063/1.1530743.
  • [27] MIKHAILOVA M.P., MOISEEV K.D., YAKOVLEV Y.P., Interface-induced optical and transport phenomena in type II broken-gap single heterojunctions, Semiconductor Science and Technology 19(10), 2004, pp. R109–R128, DOI:10.1088/0268-1242/19/10/R03.
  • [28] MIKHAILOVA M.P., TITKOV A.N., Type II heterojunctions in the GaInAsSb/GaSb system, Semiconductor Science and Technology 9(7), 1994, pp. 1279–1295, DOI:10.1088/0268-1242/9/7/001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42ffe211-21a6-476a-b0c4-372cfdec6515
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.