PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Niebieskie, zielone i białe emitery światła wytwarzane z półprzewodników AIII-BN

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Blue, green and white light emitters based on III-N semiconductors
Języki publikacji
PL
Abstrakty
PL
Postępy w ostatnich dwudziestu pięciu latach w epitaksji i technologii wytwarzania materiałów z grupy AIII-BN doprowadziły do wytworzenia komercyjnych, wysoko wydajnych źródeł światła emitujących w kolorach ultrafioletu, niebieskim, zielonym i białym. W pracy przedstawiono przegląd technologii wytwarzania diod elektroluminescencyjnych z materiałów AIII-BN, między innymi różne rozwiązania strukturalne, uwzględniające właściwości materiałowe i wymagania wzrostu krystalicznego MOCVD. Przeanalizowano różne konstrukcje ekstrakcji światła, które są istotne dla uzyskania jak najwyższej wydajności zewnętrznego świecenia. Zaprezentowano najnowsze osiągnięcia dotyczące zewnętrznej wydajności kwantowej dla wysokiej mocy diod elektroluminescencyjnych, jak również wydajności świecenia białych diod opartych na konwersji światła przy użyciu luminoforów.
EN
Recent twenty five years of advances in epitaxial growth and fabrication technologies for the III-Nitrides have led to commercially available, high efficient solid state devices that emits ultraviolet, blue, green and white light. In this work LEDs technologies based on III-Nitrides have been presented. Different structural design choices are described, taking into account specific material properties and MOCVD crystal growth requirement. We review various light extraction schemes which are important for achieving the highest possible light output efficiencies. Recent performance in external quantum efficiency for high power LEDs is reviewed, as well as luminous efficacy of white LEDs based on luminophores down-conversion.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 103 poz., rys., tab., wykr.
Twórcy
  • Instytut Technologii Materiałów Elektronicznych, ul. Wólczyńska 133, 01-919 Warszawa
  • Instytut Technologii Materiałów Elektronicznych, ul. Wólczyńska 133, 01919 Warszawa
  • Instytut Technologii Materiałów Elektronicznych, ul. Wólczyńska 133, 01-919 Warszawa
Bibliografia
  • [1] Holonyak N., Is the light emitting diode (LED) an ultimate lamp?, American Journal of Physics, 68 (2000), 864–866
  • [2] Craford M.G., Holonyak N., Kish F.A., In pursuit of the ultimate lamp, Scientific American, 284 (2001), n.2, 83–88
  • [3] Amano H., Sawaki N., Akasaki I., Toyoda Y., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, 48 (1986), 353– 355
  • [4] Nakamura S., GaN Growth Using GaN Buffer Layer, Japanese Journal of Applied Physics, 30 (1991), L1705-L1707
  • [5] Nakamura S., Senoh M., Mukai T., High-Power InGaN/GaN Double-Heterostructure Violet Light Emitting Diodes, Applied Physics Letters, 62 (1993), 2390–2392
  • [6] Nakamura S., Senoh M., Iwasa N., Nagahama S.-I., High-power InGaN single-quantum-well-structure blue and violet lightemitting diodes, Applied Physics Letters, 67 (1995), 1868–1870
  • [7] Nakamura S., Senoh M., Nagahama S., Iwasa N., Yamada T., Matsushita T., Kiyoku H., Sugimoto Y., InGaN-based multiquantumwell- structure laser diodes, Japanese Journal of Applied Physics, 35 (1996), L74–L76
  • [8] Uchida Y., Taguchi T., Lighting theory and luminous characteristics of white light-emitting diodes, Optical Engineering, 44 (2005), 124003
  • [9] Krames M.R., Shchekin O.B., Mueller-Mach R., Mueller G.O., Ling Zhou, Harbers G., Craford M.G., Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting, Journal of Display Technology, 3 (2007), n.2, 160-175
  • [10] Morita D., et al., Watt-class high-output-power 365 nm ultraviolet light-emitting diodes, Japanese Journal of Applied Physics, 43 (2004), 5945–5950
  • [11] Narukawa Y., Narita J., Sakamoto T., Deguchi K., Yamada T., Mukai T., Ultra-high efficiency white light-emitting diodes, Japanese Journal of Applied Physics, 45 (2006), L1084–L1086
  • [12] Narukawa Y., Ichikawa M., Sanga D., Sano M., Mukai T., White light emitting diodes with super-high luminous efficacy, Journal of Physics D: Applied Physics, 43 (2010), 354002
  • [13] Krames M.R., Ochiai-Holcomb M., Hofler G.E., Carter-Coman C., Chen E.I., Tan I.-H., Grillot P., Gardner N.F., Chui H.C., Huang J.-W., Stockman S.A., Kish F.A., Craford M.G., Highpower truncated-inverted-pyramid (AlxGa1-x)0.52In0.48P=GaP light-emitting diodes exhibiting >50% external quantum efficiency, Applied Physics Letters, 75 (1999), 2365–2367
  • [14] Mukai T., Yamada M., Nakamura S., Characteristics of InGaNBased UV/Blue/Green/Amber/Red Light-Emitting Diodes, Japanese Journal of Applied Physics, Part 1, 38 (1999), 3976- 3981
  • [15] Piprek J., Efficiency droop in nitride-based light-emitting diodes, physica status solidi (a), 207 (2010), 2217-2225
  • [16] Shen Y.C., Mueller G.O., Watanabe S., Gardner N.F., Munkholm A., Krames M.R., Auger recombination in InGaN measured by photoluminescence, Applied Physics Letters, 91 (2007), 141101
  • [17] David A., Gardner N.F., Droop in Ill-nitrides: comparison of bulk and injection contributions, Applied Physics Letters, 97 (2010), 193508
  • [18] Brinder M., Nirschl A., Zeisel R., Hager T., Lugauer H.J., Sabathil M., Bougeard D., Wagner J., Galler B., Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence, Applied Physics Letters, 103 (2013), 071108
  • [19] Hader J., Moloney J.V., Pasenow B., Koch S.W., Sabathil M., Linder N., Lutgen S., On the importance of radiative and Auger losses in GaN-based quantum wells, Applied Physics Letters, 92 (2008), 261103
  • [20] Kioupakis E., Rinke P., Delaney K.T., Van de Walle C.G., Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes, Applied Physics Letters, 98 (2011), 161107
  • [21] Iveland I., Martinelli L., Peretti J., Speck J.S., Weisbuch C., Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop, Physical Review Letters, 110 (2013), 177406
  • [22] Deppner M., Romer F., Witzigmann B., A unified theory for LED droop, Compound Semiconductor Magazine, 19 (2013), n.5, 45-49
  • [23] Shim J-I., Kim H., Shin D-S., Yoo H-Y., An Explanation of Efficiency Droop in InGaN-based Light Emitting Diodes: Saturated Radiative Recombination Rate at Randomly Distributed In-Rich Active Areas, Journal of the Korean Physical Society, 58 (2011), n.3, 503-508
  • [24] Hangleiter A., Hitzel F., Netzel C., Fuhrmann D., Rossow U., Ade G., Hinze P., Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN/GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency, Physical Review Letters, 95 (2005), 127402
  • [25] Xu J., Schubert M.F., Noemaun A.N., Zhu D., Kim J.K., Schubert E.F., Kim M.H., Chung H.J., Yoon S., Sone C., Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes, Applied Physics Letters, 94 (2009), 011113
  • [26] Kim M.H., Schubert M.F., Dai Q., Kim J. K., Schubert E.F., Piprek J., Park Y., Origin of efficiency droop in GaN-based light-emitting diodes, Applied Physics Letters, 91 (2007), 183507
  • [27] Schubert M.F., Xu J., Kim J.K., Schubert E.F., Kim M.H., Yoon S., Lee S.M., Sone C., Sakong T., Park Y., Polarizationmatched GaInN/AlGaInN multi-quantum-well light-emittingdiodes with reduced efficiency droop, Applied Physics Letters, 93 (2008), 041102
  • [28] Steigerwald D.A., Bhat J.C., Collins D., Fletcher R.M., Holcomb M.O., Ludowise M.J., Martin P.S., Rudaz S.L., Illumination with solid state lighting technology, IEEE Journal of Selected Topics in Quantum Electronics, 8 (2002), 310-320
  • [29] Akasaki I., Key inventions in the history of nitride-based blue LED and LD, Journal of Crystal Growth, 300 (2007), 2-10
  • [30] Keller S., DenBaars S.P., Metalorganic chemical vapor deposition of group III nitrides – a discussion of critical issues, Journal of Crystal Growth, 248 (2003), 479-486
  • [31] Nakamura S., Parton S., Fasol G., The Blue Laser Diode, Springer, (2000), 181
  • [32] Jain S.C., Willander M., Narayan J., Overstraeten R.V., III– nitrides: Growth, characterization, and properties, Journal of Applied Physics, 87, (2000), 965-1006
  • [33] Humphreys C. J., Solid-state lighting, MRS Bulletin, 33 (2008), n.4, 459-470
  • [34] Yam F.K., Hassan Z., Innovative advances in LED technology, Microelectronics Journal, 36 (2005), 129-137
  • [35] Wu X.H., Fini P., Tarsa E.J., Heying B., Keller S., Mishra U.K., DenBaars S.P., Speck J.S., Dislocation generation in GaN heteroepitaxy, Journal of Crystal Growth, 189-190 (1998), 231- 243
  • [36] Kukushkin S., Osipov A., Bessolov V., Medvedev B., Nevolin V., Tcarik K., Substrates for epitaxy of gallium nitride: New materials and techniques, Journal of the Korean Physical Society, 17 (2008), 1–32
  • [37] Nagarajan S., Svensk O., Ali M., Naresh-Kumar G., Trager- Cowan C., Suihkonen S., Sopanen M., Lipsanen H., Stress distribution of GaN layer grown on micro-pillar patterned GaN templates, Applied Physics Letters, 103 (2013), n.1, 012102
  • [38] Gibart P., Metal organic vapour phase epitaxy of GaN and lateral overgrowth, Reports on Progress in Physics, 67 (2004), 667-715
  • [39] Hiramatsu K., Nishiyama K., Onishi M., Mizutani H., Narukawa M., Motogaito A., Miyake H., Iyechika Y., Maeda T., Fabrication and characterization of low defect density GaN using facetcontrolled epitaxial lateral overgrowth (FACELO), Journal of Crystal Growth, 221 (2000), 316-326
  • [40] Sakai A., Sunakawa H., Usui A., Defect structure in selectively grown GaN films with low threading dislocation density, Applied Physics Letters, 71 (1997), 2259-2261
  • [41] Roskowski A.M., Miraglia P.Q., Preble E.A., Einfeldt S., Davis R.F., Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN(0 0 0 1) films via MOVPE, Journal of Crystal Growth, 241 (2002), 141-150
  • [42] Lang T., Odnoblyudov M.A., Bougrov V.E., Suihkonen S., Sopanen M., Lipsanen H., Morphology optimization of MOCVDgrown GaN nucleation layers by the multistep technique, Journal of Crystal Growth, 292 (2006), 26-32
  • [43] Miskys C.R., Kelly M.K., Ambacher O., Stutzmann M., Freestanding GaN-substrates and devices, physica status solidi (c), 0 (2003), n.6, 1627–1650
  • [44] Nakamura S., The roles of structural imperfections in InGaNbased blue light-emitting diodes and laser diodes, Science, 281 (1998), n.5379, 956–961
  • [45] Schubert E.F., Light-emitting diodes, Cambridge University Press, (2003)
  • [46] Chichibu S.F., et al., Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors, Nature Materials, 5 (2006), 810-816
  • [47] Takeuchi T.,Wetzel H., Yamaguchi S., Sakai H., Amano H., Akasaki I., Kaneko Y., Nakagawa S., Yamaoka Y., Yamada N., Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect, Applied Physics Letters, 73 (1998), n.12, 1691-1693
  • [48] Hongbo Y., Mustafa O., Demirel P., Cakmak H., Ozbay E., MOCVD growth and optical properties of non-polar(11–20) aplane GaN on (1 0–12) r-plane sapphire substrate, Journal of Crystal Growth, 312 (2010), 3438–3442
  • [49] Sawaki N., Hikosaka T., Koide N., Tanaka S., Honda Y., Yamaguchi M., Growth and properties of semi-polar GaN on a patterned silicon substrate, Journal of Crystal Growth, 311 (2009), 2867–2874
  • [50] Rudziński M., Kudrawiec R., Janicki L., Serafińczuk J., Kucharski R., Zając M., Misiewicz J., Doradziński R., Dwiliński R., Strupiński W., Growth of GaN epilayers on c-, m-, a-, and (20.1)-plane GaN bulk substrates obtained by ammonothermal method, Journal of Crystal Growth, 328 (2011), 5-12
  • [51] Zhao Y., Tanaka S., Pan C.-C., Fujito K., Feezell D., Speck J.S., DenBaars S.P., Nakamura S., High-Power Blue-Violet Semipolar (2021) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2, Applied Physics Express, 4 (2011), 082104
  • [52] Zhao Y., Tanaka S., Yan Q., Huang C.-Y., Chung R.B., Pan C.-C., Ujito K., Feezell D., van de Walle C.G., Speck J.S., DenBaars S.P., Nakamura S., High optical polarization ratio from semipolar (20-2-1) blue-green InGaN/GaN light-emitting diodes, Applied Physics Letters, 99 (2011), 051109
  • [53] Nakamura S., Growth of In/sub x-Ga/sub (1-x)-N compound semiconductors and high-power InGaN/AlGaN double heterostructure violet-light-emitting-diodes, Microelectronics Journal, 25 (1994), 651-659
  • [54] McCluskey M.D., Romano L.T., Krusor B.S., Bour D.P., Johnson N.M., Brennan S., Phase separation in InGaN/GaN multiple quantum wells, Applied Physics Letters, 72 (1998), n.14, 1730-1732
  • [55] Torma P.T., Svensk O., Ali M., Suihkonen S., Sopanen M., Odnoblyudov M.A., Bougrov V.E., Effect of InGaN underneath layer on MOVPE-grown InGaN/GaN blue LEDs, Journal of Crystal Growth, 310 (2008), n.23, 5162-5165
  • [56] Scholz F., Off J., Fehrenbacher E., Gfrörer O., Brockt G., Investigations on Structural Properties of GaInN–GaN Multi Quantum Well Structures, physica status solidi (a), 180 (2000), 315-320
  • [57] Van Daele B., Van Tendeloo G., Jacobs K., Moerman I., Leys M.R., Formation of metallic In in InGaN/GaN multiquantum wells, Applied Physics Letters, 85 (2004), 4379-4381
  • [58] Moon Y.T., Kim D.J., Song K.M., Choi C.J., Han S.H., Seong T.Y., Park S.J., Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells, Journal of Applied Physics, 89 (2001), 6514-6518
  • [59] Ting S.M., Ramer J.C., Florescu D.I., Merai V.N., Albert B.E., Lee D.S., Lu D., Christini D.V., Liu L., Armour E.A., Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition, Journal of Applied Physics, 94 (2003), 1461-1467
  • [60] Grzanka S., Franssen G., Targowski G., Krowicki K., Suski T., Czernecki R., Perlin P., Leszczyński M., Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes, Applied Physics Letters, 90 (2007), 103507
  • [61] Svensk O., Suihkonen S., Lang T., Lipsanen H., Sopanen M., Odnoblyudov M.A., Bougrov V.E., Effect of growth conditions on electrical properties of Mg-doped p-GaN, Journal of Crystal Growth, 298 (2007), 811-814
  • [62] Feduniewicz A., Skierbiszewski C., Siekacz M., Wasilewski Z., Sproule I., Grzanka S., Jakiela R., Borysiuk J., Kamler G., Litwin-Staszewska E., Czernecki R., Bockowski M., Porowski S., Control of Mg doping of GaN in RF-plasma molecular beam epitaxy, Journal of Crystal Growth, 278 (2005), 443-448
  • [63] Kaufmann U., Kunzer M., Obloh H., Maier M., Manz C., Ramakrishnan A., Santic B., Origin of defect-related photoluminescence bands in doped and nominally undoped GaN, Physical Review B, 59 (1999), 5561-5567
  • [64] Stephan T., Köhler K., Kunzer M., Schlotter P., Wagner J., Electroluminescence efficiency of InGaN light emitting diodes: dependence on AlGaN:Mg electron blocking layer width and Mg doping profile, physica status solidi (c), 0 (2003), 2198- 2201
  • [65] Gutt R., Kohler K., Wiegert J., Kirste L., Passow T., and Wagner J., Controlling the Mg doping profile in MOVPE-grown GaN/Al0.2Ga0.8N light-emitting diodes, physica status solidi (c), 8 (2011) 2072-2074
  • [66] Svensk O., Törmä P.T., Suihkonen S., Ali M., Lipsanen H., Sopanen M., Odnoblyudov M.A., Bougrov V.E., Enhanced electroluminescence in 405 nm InGaN/GaN LEDs by optimized electron blocking layer, Journal of Crystal Growth, 310 (2008), 5154-5157
  • [67] Kuo Y.-K., Chang J.-Y., Tsai M.-C., Enhancement in holeinjection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer, Optics Letters, 35 (2010), 3285-3287
  • [68] Zhang Y.Y., Yin Y.A., Performance enhancement of blue lightemitting diodes with a special designed AlGaN/GaNsuperlattice electron-blocking layer, Applied Physics Letters, 99 (2011), 221103
  • [69] Han S.-H., Lee D.-Y., Lee S.-J., Cho C.-Y., Kwon M.-K., Lee S. P., Noh D. Y., Kim D.-J., Kim Y. C., Park S.-J., Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes, Applied Physics Letters, 94 (2009), 231123
  • [70] Fischer S., Wetzel C., Haller E.E., On p‐type doping in GaN – acceptor binding energies, Applied Physics Letters, 67 (1995), n.9, 1298-1300
  • [71] Pearton S.J., Lee J.W., Yuan C., Minority‐carrier‐enhanced reactivation of hydrogen‐passivated Mg in GaN, Applied Physics Letters, 68 (1996), n.19, 2690-2692
  • [72] Chadi D.J., Atomic origin of deep levels in p-type GaN: Theory, Applied Physics Letters, 71 (1997), 2970-2971
  • [73] Sugiura L., Suziki M., Nishio J., Itaya K., Kokubun Y., Ishikawa M., Characteristics of Mg-doped GaN and AlGaN grown by H2- ambient and N2-ambient Metalorganic Chemical Vapor Deposition, Japanese Journal of Applied Physics, 37 (1998) 3878–3881
  • [74] Yamaguchi S., Kariya M., Kosaki M., Yukawa Y., Nitta S., Amano H., Akasaki I., Control of strain in GaN by a combination of H-2 and N-2 carrier gases, Journal of Applied Physics, 89 (2001), 7820-7824
  • [75] Yamaguchi S., Iwamura Y., Watanabe Y., Kosaki M., Yukawa Y., Nitta S., Kamiyama S., Amano H., Akasaki I., Electrical and crystalline properties of as-grown p-type GaN grown by metalorganic vapor phase epitaxy, Journal of Crystal Growth, 248 (2003), 503–506
  • [76] Ho J.-K., Jong C., Chiu C.C., Chen C.-Y., Shih K.-K., Lowresistance ohmic contacts to p-type GaN, Applied Physics Letters, 74 (1999), 1275
  • [77] Cich M.J., Aldaz R.I., Chakraborty A., David A., Grundmann M.J., Tyagi A., Zhang M., Steranka F.M., Krames M.R., Bulk GaN based violet light-emitting diodes with high efficiency at very high current density, Applied Physics Letters, 101 (2012), 223509
  • [78] Kim J.-Y., Kwon M.-K., Kim J.-P., Park S.-J., Enhanced light extraction from triangular GaN-based light-emitting diodes, IEEE Photonics Technology Letters, 19 (2007), 1865 –1867
  • [79] Fujii T., Gao Y., Sharma R., Hu E.L., DenBaars S.P., Nakamura S., Increase in the extraction efficiency of GaNbased light-emitting diodes via surface roughening, Applied Physics Letters, 84 (2004), 855–857
  • [80] Shchekin O.B., Epler J.E., Trottier T.A., Margalith T., Steigerwald D.A., Holcomb M.O., Martin P.S., Krames M.R., High performance thinfilm flip-chip InGaN/GaN light-emitting diodes, Applied Physics Letters, 89 (2006), 071109–3
  • [81] Wierer J.J., Steigerwald D.A., Krames M.R., O’Shea J.J., Ludowise M.J., Christenson G., Shen Y.C., Lowery C., Martin P.S., Subramanya S., Gotz W., Gardner N.F., Kern R.S., Stockman S.A., High-power AlGaInN flip-chip light-emitting diodes, Applied Physics Letters, 78 (2001), 3379–3381
  • [82] Chang S. J., Chang C. S., Su Y. K., Highly Reliable Nitride- Based LEDs With SPS+ITO Upper Contacts, IEEE Journal of Quantum Electronics, 39 (2003), 1439-1443
  • [83] Lim J.-H., Hwang D.-K., Kwon M.-K., Park I.-K., Na S.-I., Park S.-J., Highly transparent ZnO spreading layer for GaN based LED, physica status solidi (c), 2 (2005), 2533-2535
  • [84] McGroddy K., David A., Matioli E., Iza M., Nakamura S., DenBaars S., Speck J.S., Weisbuch C., Hu E.L., Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes, Applied Physics Letters, 93 (2008), 103502–3
  • [85] Kuo D. S., Chang S. J., Shen C. F., Ko T. C., Ko T. K., Hon S. J., Nitride based LEDs with oblique sidewalls and a light guiding structure, Semiconductor Science and Technology, 25 (2010), n.5, 055010
  • [86] Huang Y.-C., Lin C.-F., Chen S.-H., Dai J.-J., Wang G.-M., Huang K.-P., Chen K.-T., Hsu Y.-H., InGaN-based lightemitting diodes with an embedded conical air-voids structure, Optics Express, 19 (2011), A57–A63
  • [87] Ali M., Svensk O., Riuttanen L., Kruse M., Suihkonen S., Romanov A.E., Törmä P.T., Sopanen M., Lipsanen H., Odnoblyudov M.A., Bougrov V.E., Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning, Semiconductor Science and Technology, 27 (2012), 082002
  • [88] Hibbard D.L., Jung S.P., Wang C., Ullery D., Zhao Y.S., Lee H.P., So W., Liu H., Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag, Applied Physics Letters, 83 (2003), 311-313
  • [89] Tsai P., Chen W., Su Y., Huang C., Enhanced light output of ingan leds with a roughened p-GaN surface using different TMGa flow rates in p-AlGaN layer, Applied Surface Science, 256 (2010), 6694–6698
  • [90] Chan C.-H., Hou C.-H., Tseng S.-Z., Chen T.-J., Chien H.-T., Hsiao F.-L., Lee C.-C., Tsai Y.-L., Chen C.-C., Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate, Applied Physics Letters, 95 (2009), 011110–3
  • [91] Pan S.-M., Tu R.-C., Fan Y.-M., Yeh R.-C., Hsu J.-T., Improvement of InGaN-GaN light-emitting diodes with surfacetextured ITO transparent ohmic contacts, IEEE Photonics Technology Letters, 15 (2003), n.5, 649–651
  • [92] Kim S. H., Lee K.-D., Kim J.-Y., Kwon M.-K., Park S.-J., Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography, Nanotechnology, 18 (2007), 055306
  • [93] Franz G., Surface roughening of SiC and Ga-containing semiconductors in reactive plasmas, Materials Science in Semiconductor Processing, 2 (1999), 349-357
  • [94] Torma P.T., Svensk O., Ali M., Suihkonen S., Sopanen M., Odnoblyudov M.A., Bougrov V.E., Maskless roughening of sapphire substrates for enhanced light extraction of nitride based blue LEDs, Solid State Electronics, 53 (2009), 166-169
  • [95] Song J.-C., et al., Characteristics comparison between GaN epilayers grown on patterned and unpatterned sapphire substrate (0 0 0 1), Journal of Crystal Growth, 308 (2007), 321– 324
  • [96] Hsu Y.P., Chang S.J., Su Y.K., Sheu J.K., Lee C.T., Wen T.C., Wu L.W., Kuo C.H., Chang C.S., Shei S.C., Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs, Journal of Crystal Growth, 261 (2004), 466-470
  • [97] Lee Y.J., Hwang J.M., Hsu T.C., Hsieh M.H., Jou M.J., Lee B.J., Lu T.C., Kuo H.C., Wang S.C., Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates, IEEE Photonics Technology Letters, 18 (2006), 1152-1154
  • [98] Wuu D.S., Wang W.K., Wen K.S., Huang S.H., Lin S.H., Huang S.Y., Lin C.F., Horng R.H., Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template, Applied Physics Letters, 89 (2006), 161105-3
  • [99] Huang X.-H., et al., Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape, Chinese Physics B, 21 (2012), n.3, 037105
  • [100] Gao H., et al., Improvement of the performance of GaNbased LEDs grown on sapphire substrates patterned by wet and ICP etching, Solid State Electronics, 52 (2008), 962–967
  • [101] Bessho M., Shimizu K., Latest trends in LED lighting, Electronics and Communications in Japan, 95 (2012), 1-7
  • [102] Bando K., Sakano K., Noguchi Y., Shimizu Y., Development of High-bright and Pure-white LED Lamps, Journal of Light and Visual Environment, 22 (1998), 2-6
  • [103] Kim J.K., et al., Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup, Japanese Journal of Applied Physics, 44 (2005), n.21, L 649–L 651
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42fc3ae3-ce0c-4990-b03c-2dbda5b67395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.