PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical Model of Surface and Quasi-Spherical Sea Noise and Its Application to Analysis of DIFAR Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various types of passive sonar systems are used to detect submarines. These activities are complex and demanding. Therefore, computer simulations are most often used at the design stage of these systems. For this reason, it is also necessary to simulate the acoustic ambient noise of the sea. The article proposes a new numerical model of surface and quasi-spherical sea noise and presents its statistical parameters. The results of the application of the developed noise model to analyse the received signals of the DIFAR1 sonobuoy are also presented.
Rocznik
Strony
591--604
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics Department of Sonar Systems Gdansk, Poland
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics Department of Sonar Systems Gdansk, Poland
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics Department of Sonar Systems Gdansk, Poland
Bibliografia
  • 1. Barclay D.R., Buckingham M.J. (2014), On the spatial properties of ambient noise in the Tonga Trench, including effects of bathymetric shadowing, The Journal of the Acoustical Society of America, 136(5): 2497-2511, doi: 10.1121/1.4896742.
  • 2. Buckingham M.J. (2012), Cross-correlation in band- limited ocean ambient noise fields, The Journal of the Acoustical Society of America, 131(4): 2643-2657, doi: 10.1121/1.3688506.
  • 3. Burdick W.S. (1984), Underwater Acoustic System Analysis, Prentice-Hall, Englewood Cliffs, NJ.
  • 4. Cohen J. (1988), Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associates, Publishers.
  • 5. Crocker M.J. (1998), Handbook of Acoustics, John Wiley & Sons.
  • 6. Cron B.F., Sherman C.H. (1962), Spatial-correlation functions for various noise models, The Journal of the Acoustical Society of America, 34(11): 1732-1736, doi: 10.1121/1.1909110.
  • 7. Cron B.F., Sherman C.H. (1965), Addendum: Spatial correlation functions for various noise models [J. Acoust. Soc. Am., 34: 1732-1736 (1962)], The Journal of the Acoustical Society of America, 38(4): 885, doi: 10.1121/1.1909826.
  • 8. Franks L.E. (1981), Signal Theory. Revised Edition, Dowden & Culver, Inc.: Stroudsburg, PA.
  • 9. Grelowska G., Kozaczka E., Kozaczka S., Szymczak W. (2013), Underwater noise generated by small ships in the shallow sea, Archives of Acoustics, 38(3): 351-356, doi: 10.2478/aoa-2013-0041.
  • 10. Jagodziński Z. (1961), Radionavigation Systems [in Polish], Wydawnictwo MON, Warszawa.
  • 11. Klusek Z., Lisimenka A. (2004), Characteristics of underwater noise generated by single breaking wave, Hydroacoustics, 7: 107-114.
  • 12. Klusek Z., Lisimenka A. (2016), Seasonal and diel variability of the underwater noise in the Baltic Sea, The Journal of the Acoustical Society of America, 139(4): 1537-1547, doi: 10.1121/1.4944875.
  • 13. Kochańska I., Nissen I., Marszal J. (2018), A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel, The Journal of the Acoustical Society of America, 143(2): EL116-EL120, doi: 10.1121/ 1.5023834.
  • 14. Kozaczka E., Grelowska G. (2011), Shipping low frequency noise and its propagation in shallow water, Acta Physica Polonica A, 119(6A): 1009-1012, doi: 10.12693/APhysPolA.119.1009.
  • 15. Lyons R.G. (2004), Understanding Digital Signal Processing, 2nd ed., Prentice Hall, Inc.
  • 16. Mallet A.L. (1975), Underwater Direction Signal Processing System, US Patent No 3,870,989.
  • 17. Ren C., Huang Y. (2020), A spatial correlation model for broadband surface noise, The Journal of the Acoustical Society of America, 147(2): EL99-EL105, doi: 10.1121/10.0000710.
  • 18. Rudnicki M., Marszal J., Salamon R. (2020), Impact of spatial noise correlation on bearing accuracy in DIFAR systems, Archives of Acoustics, 45(4): 709-720, doi: 10.24425/aoa.2020.135277.
  • 19. Salamon R. (2006), Sonar systems [in Polish], Gdańskie Towarzystwo Naukowe, Gdansk, Poland.
  • 20. Schmidt J.H., Schmidt A., Kochańska I. (2018), Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System, [In:] Proceedings of 2018 Joint Conference - Acoustics, Ustka, Poland, 2018, IEEE Xplore Digital Library, pp. 280¬283, doi: 10.1109/acoustics.2018.8502439.
  • 21. Urick R.J. (1983), Principles of Underwater Sound, 3rd ed., Peninsula Pub.
  • 22. Urick R.J. (1986), Ambient Noise in the Sea, 2nd ed., Peninsula Pub.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42fba672-9932-4000-99a2-8af5b37d2637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.