PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural Parameters of Functional Membranes for Integration in Smart Wearable Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Parametry konstrukcyjne membran użytych w „inteligentnych” materiałach
Języki publikacji
EN
Abstrakty
EN
Smart clothes can be described as textiles that change their behavior under some external factors (stimulants). The response of the smart cloth can be passive (just as a sensor) or active (where a combination of sensing and another reaction takes place). The materials involved in these textiles are crucial for many applications, especially for health related applications where the “wearables” can provide instantaneous monitoring and aid to people with certain disabilities. This work consists of two main parts: First it investigates the different materials used in smart clothing for monitoring the vital activities of the human body (e.g. the breathing rates) with an emphasis on piezoresistive structures as they work sensing elements for mechanical strains. Second this work presents the production of functional membrane samples based on synthesized pyrrolinone ester hydrazone dye with a preliminary investigation of their chemical and geometrical parameters, especially their sensitivity for monitoring the presence of ammonia to function as a smart textile based colorimetric chemosensor.
PL
„Inteligentne” ubrania można opisać jako tekstylia, które reagują pod wpływem czynników zewnętrznych (bodźców). Odpowiedź „inteligentnej” odzieży może być bierna (czujnik) lub czynna (wykrywanie i reakcja). Materiały związane z tymi wyrobami tekstylnymi mają kluczowe znaczenie dla wielu zastosowań, zwłaszcza dla tych związanych ze zdrowiem, gdzie odzież może zapewnić natychmiastowy monitoring i pomoc osobom niepełnosprawnym. Przedstawiona praca składała się z dwóch głównych części: najpierw badano różne materiały stosowane w „inteligentnej” odzieży do monitorowania istotnych czynności organizmu ludzkiego (np. szybkości oddychania), ze szczególnym uwzględnieniem struktur piezorezystancyjnych. W drugiej części pracy przedstawiono wytwarzanie funkcjonalnych membran z zastosowaniem syntetycznego barwnika, zbadano parametry chemiczne i geometryczne, w szczególności wrażliwości na monitorowanie obecności amoniaku w celu zastosowania wyrobu jako chemosensor kolorymetryczny.
Rocznik
Strony
73--78
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Technical University of Liberec, Institute of Nanomaterials Advanced Technology and Innovation, Liberec, Czech Republic
  • Mansoura University, Department of Textile Engineering, Mansoura, Egypt
autor
  • Textile Research Division, National Research Centre, Department of Dyeing & Printing and Textile Auxiliaries, Dokki, Giza, Egypt
  • Technical University of Liberec, Faculty of Textile Engineering, Liberec, Czech Republic
  • Technical University of Liberec, Faculty of Textile Engineering, Liberec, Czech Republic
  • Technical University of Liberec, Institute of Nanomaterials Advanced Technology and Innovation, Liberec, Czech Republic
autor
  • Technical University of Liberec, Institute of Nanomaterials Advanced Technology and Innovation, Liberec, Czech Republic
autor
  • Technical University of Liberec, Institute of Nanomaterials Advanced Technology and Innovation, Liberec, Czech Republic
Bibliografia
  • 1. Cherenack K, Van Pieterson L. Smart textiles: Challenges and opportunities. Journal of Applied Physics, 2012; 112, 9.
  • 2. Stoppa M, Chiolerio A. Wearable electronics and smart textiles: A critical review, Sensors 2014; 14, 7: 11957-11992.
  • 3. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012; 9, 1: 21.
  • 4. Guo L, Berglin L, Wiklund U, Mattila H. Design of a garment-based sensing system for breathing monitoring. Text. Res. J. 2012; 83, 5: 499-509.
  • 5. Loriga G, Taccini N, De Rossi D, Paradiso R. Textile sensing interfaces for cardiopulmonary signs monitoring. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005; 7: 7349-52.
  • 6. Grillet A, Kinet D, Witt J, Schukar M, Krebber K. Pirotte F, Depre A. Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring. IEEE Sens. J. 2008; 8, 7: 1215-1222.
  • 7. Merritt C R, Nagle H T, Grant E. Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J 2009; 9, 1: 71-78.
  • 8. Guo L, Berglin L, Li Y J, Mattila H, Mehrjerdi A K, Skrifvars M. Disappearing Sensor-Textile Based Sensor for Monitoring Breathing. Control, Automation and Systems Engineering (CASE), 2011 International Conference on. pp. 1-4, 2011.
  • 9. Yang CM, Yang T L, Wu C C, Hung S H, Liao M H, Su M J, Hsieh H C. Textile-based capacitive sensor for a wireless wearable breath monitoring system, in Digest of Technical Papers - IEEE International Conference on Consumer Electronics, 2014, pp. 232-233.
  • 10. Lanatà A, Scilingo E P, Nardini E, Loriga G, Paradiso R, De-Rossi D. Comparative Evaluation of Susceptibility to Motion Artifact in Different Wearable Systems for Monitoring Respiratory Rate. IEEE Trans. Inf. Technol. Biomed. 2010; 14, 2: 378-386.
  • 11. Guo L, Peterson J, Qureshi W, Kalantar Mehrjerdi A, Skrifvars M, Berglin L. Knitted wearable stretch sensor for breathing monitoring application, 2011.
  • 12. Zhao Y, Zhang G, Liu Z, Guo C, Peng C, Pei M, Li P. Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-12-carboxylic acid based fluorescent sensors for pH and Fe3+. J. Photochem. Photobiol. A Chem. 2016; 314: 52-59.
  • 13. Yu F, Hou L J, Qin L Y, Bin Chao J, Wang Y, Jin W J. A new colorimetric and turn-on fluorescent chemosensor for Al3+ in aqueous medium and its application in live-cell imaging. J. Photochem. Photobiol. A Chem. 2016; 315: 8-13.
  • 14. Wang E, Zhou Y, Huang Q, Pang L, Qiao H, Yu F, Gao B, Zhang J, Min Y, Ma T. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu 2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016; 152: 327-335.
  • 15. Park G J, Lee J J, You G R, Nguyen L, Noh I, Kim C. A dual chemosensor for Zn 2+ and Co 2+ in aqueous media and living cells: experimental and theoretical studies. Sensors Actuators B Chem. 2016; 223: 509-519.
  • 16. Wu J, Liu W, Ge J, Zhang H, Wang P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 2011; 40, 7: 3483-3495.
  • 17. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010; 110, 4: 1857-1959.
  • 18. Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 2007; 36, 6: 993-1017.
  • 19. Gameiro P, Reis S, Lima J, de Castro B. Calibration of pH glass electrodes by direct strong acid/strong base titrations under dilute conditions. Anal. Chim. Acta 2000; 405, 1: 167-172.
  • 20. Balázs N, Sipos P, Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan. Carbohydr. Res. 2007;. 342, 1: 124-130.
  • 21. Qian Y, Cao L, Jia C, Boamah P O, Yang Q, Liu C, Huang Y, Zhang Q. A highly selective chemosensor for naked-eye sensing of nanomolar Cu (II) in an aqueous medium. RSC Adv. 2015; 5, 95: 77965-77972.
  • 22. Saleem M, Lee K H. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 2015; 5, 88: 72150-72287.
  • 23. Yu R-Q, Zhang Z-R, Shen G-L. Potentiometric sensors: aspects of the recent development. Sensors Actuators B Chem. 2000; 65, 1: 150-153.
  • 24. Scheller F W, Wollenberger U, Warsinke A, Lisdat F. Research and development in biosensors. Curr. Opin. Biotechnol. 2001; 12, 1: 35-40.
  • 25. Aysha T, Lyčka A, Luňák S Jr, Machalický O, Elsedik M, Hrdina R. Synthesis and spectral properties of new hydrazone dyes and their Co(III) azo complexes. Dye. Pigment. 2013; 98, 3: 547-556.
  • 26. Aysha T, Luňák S Jr., Lyčka A, Hrdina R. Synthesis, absorption and fluorescence of hydrazone colorants based on pyrrolinone esters. Dye. Pigment. 2011; 91, 2: 170-176.
  • 27. Judd D B, Wyszecki G. Color in business, science, and industry, 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42f6ac4a-3dc5-4b2f-921c-8decde160f42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.