Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work put in evidence, magnetic field effect the electrical parameters of a silicon solar cell illuminated by an intense light concentration: external load electric power, conversion efficiency, fill factor, external optimal charge load. Due to the high photogeneration of a carrier in intense light illumination mode, in addition of magnetic field, we took into account the carrier gradient electric field in the base of the solar cell. Taking into account this electric field and the applied magnetic field in our model led to new analytical expressions of the continuity equation, the photocurrent and the photovoltage. In this work, we used the electric power curves versus junction dynamic velocity (Sj) to determine, according to magnetic field, the maximum electric power Pelmax and we calculate the solar cell conversion efficiency (η). We also used the J-V characteristics to determine the solar cell short circuit density current (Jcc) and the open circuit voltage (Vco) under magnetic field and we calculate the fill factor (FF). Finally, we used simultaneously the J-V characteristics and equipower curves to determine the optimal external load resistance. The results of this study have showed that the maximum electric power and the conversion efficiency are higher than those of monofacial and bifacial silicon solar cells illuminated by conventional light but they decreased with the increase of magnetic field.
Wydawca
Rocznik
Tom
Strony
133--138
Opis fizyczny
Bibliogr. 16 poz., fig., tab.
Twórcy
autor
- Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, University of Ouagadougou Joseph KI-ZERBO, Burkina Faso
autor
- Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, University of Ouagadougou Joseph KI-ZERBO, Burkina Faso
autor
- Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, University of Ouagadougou Joseph KI-ZERBO, Burkina Faso
autor
- Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, University of Ouagadougou Joseph KI-ZERBO, Burkina Faso
autor
- Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, University of Ouagadougou Joseph KI-ZERBO, Burkina Faso
autor
- Laboratory of Thermal and Renewable Energies, Department of Physics, Unit of Training and Research in Pure and Applied Sciences, University of Ouagadougou Joseph KI-ZERBO, Burkina Faso
Bibliografia
- 1. Betser Y., Ritter D., Bahir G., Cohen S. and Sperling J. Measurement of the minority carrier mobility in the base of heterojunction bipolar transistor using magneto-transport method. Journal of Applied Physics Letters, 67 (13), 1995, 1883-1884.
- 2. Erel S. The effect of electric and magnetic fields on the operation of a photovoltaic cell. Solar Energy Materials & Solar Cells, 71, 2002, 273-280..
- 3. Vardanyan R. R., Kerst U., Wawer P. and Wagemann H. Method for measurement of all recombination parameters in the base region of solar cells. Proc of 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna, Austria, 1998, 191-193.
- 4. Zouma B., Maiga A. S., Dieng M. and Zougmoré F. 3D approach of spectral response for a bifacial silicon solar cell under a constant magnetic field. Global journal of pure and applied sciences, 15(1), 2009, 117-124.
- 5. Zoungrana M., Zerbo I., Seré A. D., Zouma B. and Zougmoré F. 3D Study of Bifacial Silicon Solar Cell Under Intense Light Concentration and Under External Constant Magnetic Field: Effect of magnetic field on carriers mobility and carriers density. Global Journal of Engineering Research, 10 (1-2), 2011, 113-124.
- 6. Zoungrana M., Zerbo I., Ouedraogo F., Zouma B. and Zougmoré F. 3D modelling of magnetic field and ligth concentration effects on a bifacial silicon solar cell illuminated by its rear side. IOP Conference Series: Materials Science and Engineering, 29, 2012, 012020.
- 7. Zerbo I., Zoungrana M., Seré A. D. and Zougmoré F. Silicon solar cell under electromagnetic wave in steady state: effect of the telecommunication source’s power of radiation. IOP Conference Series: Materials Science and Engineering, 29, 2012, 012019.
- 8. Erel S. Comparing the Behaviors of some typical Solar Cells Under External Effects. TEKNOLOJI, 11 (3), 2008, 233-237.
- 9. Zerbo I., Zoungrana M., Sourabié I., Ouedraogo A., Zouma B. and Bathiebo D. J. External magnetic field effect on bifacial silicon solar cell’s electric power and conversion efficiency. Turkish Journal of Physics, 39, 2015, 288- 294.
- 10. Zerbo I., Zoungrana M., Sourabié I., Ouedraogo A., Zouma B. and Bathiebo D. J. External magnetic field effect on bifacial silicon solar cell’s electrical parameters. Energy and Power Engineering, 8, 2016, 146-151.
- 11. Sané M. and Barro F. I. Effect of both magnetic field and doping density on series and shunt resistances under frequency. Indian Journal of Pure and Applied Physics, 53, 2015, 590-595.
- 12. Pelanchon F., Sudre C. and Moreau Y. Solar cells under intense light concentration: numerical and analytical approaches. Proc of 11th European Photovoltaic Solar Energy Conference. Montreux, France, 1992, 265-267.
- 13. Mohammad S.N. An Alternative Method of the Performance Analysis of Silicon Solar Cells. Journal of Applied Physics, 61(2), 1987, 767-772.
- 14. Dugas J. 3D modelling of a reverse cell made with improved multicrystalline silicon wafers. Solar Energy Materials and Solar cells 32, 1994, 71-88.
- 15. Ba B., Kane M. and Sarr J. Modeling recombination current in polysilicon solar cell grain boundaries.Solar Energy Materials & Solar Cells 80, 2003, 143-154.
- 16. Equer B. Energie Solaire Photovoltaique: Physique et technologie de la conversion photovoltaique. UNESCO, 1991.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42f4891a-a393-4d49-8678-a555a320b25f