PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on Cobalt based alloy modified by Titanium for dental applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main goal of this study is to develop and obtain some competitive products, with high added value. In particular, the attention will be focused on the possibility to obtain a new class of Cobalt based alloy by Ti addition. Design/methodology/approach: Modification of the composition by Ti addition can increase the corrosion resistance, processing and at the same time can improve the alloy biocompatibility. Findings: Addition of these elements has a positive effect on the alloy hardness. Up to 6% of Ti or combining Ti and Zr as alloying elements there are no significant differences as hardness concerns. As corrosion resistance in a simulated oral cavity environment concerns, no significant release of metal ions was observed, the pH value and the weight loss fulfil the conditions required by the Standard ISO 10271/2011. However, the best behaviour was obtained employing CoCrMoTi6 alloy. Research limitations/implications: Based on the up to date achieved outcomes, it appears that a quite homogeneous and good mechanical properties have been obtained modifying the original alloy with 6% of Ti. The future research work will be oriented to get additional and detailed data on the biocompatibility of the alloy. Practical implications: The central issue is the valid transfer to dentistry application. Originality/value: The aim of the paper is to obtain a new class of Co based alloy by the modification of the original chemical composition.
Rocznik
Strony
62--68
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • ALTO – Metallurgy Group, Institute of Science & Engineering of Materials for the Innovative technologies, Department of Applied Science and Technology, Politecnico di Torino, Alessandria Campus & Torino Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
autor
  • ALTO – Metallurgy Group, Institute of Science & Engineering of Materials for the Innovative technologies, Department of Applied Science and Technology, Politecnico di Torino, Alessandria Campus & Torino Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
autor
  • Unilab 2000 Srl, Corso Castelfidardo, 1, 10128 Torino, Italy
autor
  • R&D Consulting and Services, Str. Tudor Argezi 21, Bucharest, Sector 2, Romania
autor
  • University Politehnica of Bucharest, Spl. Indep., Bucharest, Romania
Bibliografia
  • [1] J.J. Jacobs, J.L. Gilbert, M. Calvitti, R.M. Urban, Corrosion of metal orthopaedic implants Journal of Bone Joint Surgery A 80 (1998) 268-282.
  • [2] M.K. Lei, X.N. Zhu, In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels, Biomaterials 2 (2001) 641-647.
  • [3] R.B. Tracana, J.P. Sousa, G.S. Carvalho, Mouse inflammatory response stainless steel corrosion products, Journal of Materials Science - Materials in Medicine 5 (1994) 596-600.
  • [4] W. Kajzer, M. Kaczmarek, J. Marciniak, Influence of medium and surface modification on corrosion behaviour of the cobalt alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 131-134.
  • [5] J.W. Vahey, P.T. Simonian, E.U. Conrad, Carcinogenicity and metallic implants, American Journal of Orthodontics and Dentofacial Orthopedics 24 (1995) 319-324.
  • [6] K. Arvideon, M. Cottler-Fox, V. Friberg, In vitro corrosion behaviour of bioceramic, metallic and bioceramic-metallic coated stainless steel dental implants, Scandinavian Journal of Dental Research 95 (1986) 356-363.
  • [7] M. Kiel, A. Krauze, J. Marciniak, Corrosion resistance of metallic implants used in bone surgery, Archives of Materials Science and Engineering 30/2 (2008) 77-80.
  • [8] L.A. Dobrzański, Ł. Reimann, Influence of Cr and Co on hardness and corrosion resistance CoCrMo alloys used on venture, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 193-199.
  • [9] D.P. Jevremovic, T.M. Puskar, I. Budak, Dj. Vukelic, V. Kojic, D. Eggbeer, R.J. Williams, An RE/RM approach to the design and manufacture of removable partial dentures with a biocompatibility analysis of the F75 Co-Cr SLM alloy, Materials and Technology 46 (2012) 123-129.
  • [10] L.A. Dobrzański, Ł. Reimann, C. Krawczyk, Effect of age hardening on corrosion resistance and hardness of CoCrMo alloys used in dental engineering, Archives of Materials Science and Engineering 57/1 (2012) 5-12.
  • [11] J. Konieczny, Z. Rdzawski, Antibacterial properties of copper and its alloys, Archives of Materials Science and Engineering 56/2 (2012) 53-60.
  • [12] M. Arndt, A. Bruck, T. Scully, A. Jager, C. Bourauel, Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions, Journal of Materials Science 40 (2005) 3659-3667.
  • [13] Y. Okazaki, E. Gotoh, Metal release from stainless steel, Co-Cr-Mo-Ni-Fe and Ni-Ti alloys in vascular implants, Corrosion Science 50 (2008) 3429-3438.
  • [14] J.J. Jacobs, C. Silverton, N.J. Hallab, A.K. Skipor, L. Patterson, J. Blacck, J.O. Galante, Metal release and excretion from cementless titanium alloy total knee replacements, Clinical Orthopaedics and Related Research 358 (1999) 173-180.
  • [15] C.O. Montero, C.M. Talavera, H. Lopez, Effect of alloy preheating on the mechanical properties of as-cast Co-Cr-Mo-C alloys, Metallurgical and Materials Transactions A 30 (1999) 611-620.
  • [16] J.D. DesJardins, B. Burnikel, M. LaBerge, UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation, Wear 264/3-4 (2008) 245-256.
  • [17] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5MoX in aqueous environments, Corrosion Science 52/8 (2010) 2571-2581.
  • [18] L.A. Dobrzański, R. Honysz, Informative technologies in the material products designing, Archives Materials Science and Engineering 55/1 (2012) 37-44.
  • [19] L. Savarino, D. Granchi, G. Ciapetti, E. Cenni, A.N. Pantoli, R. Rotini, C.A. Veronesi, N. Baldini, A. Giunti, Ion release in patients with metal-on-metal hip bearings in total joint replacement-a comparison with metal-on-polyethylene bearings, Journal of Biomedical Materials Research 63 (2002) 467-474.
  • [20] ASTM Standard F75-07 Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting, Alloy for Surgical Implants, ASTM F-75, ASTM International, 2001.
  • [21] M. Gomez, H. Mancha, A. Salinas, J.L. Rodriguez, J. Escobedo, M. Castro, Relationship between microstructure and ductility of investment cast ASTM F-75 implant alloy, Journal of Biomedical Materials Research 34 (1997) 157-163.
  • [22] T. Kokubo, H.M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials 24 (2003) 2161-2175.
  • [23] J. Escobedo, J. Mendez, D. Cortes, J. Gomez, M. Mendez, H. Mancha, Effect of nitrogen on the microstructure and mechanical properties of a CoCrMo alloy, Materials & Design 17/2 (1996) 79-83.
  • [24] J.T. Bridgeman. V.A. Marker, S.K. Hummel, B.W. Benson, L.L. Pace, Comparison of titabium and cobalt-chromium removable partial denture clasps, Journal of Prosthetic Dentistry 78 (1997) 187-193.
  • [25] P.K. Vallittu Fatigue resistance and stress of wrought-steel wire clasps, Journal of Prosthodontics 5 (1996)186-92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42f3afe3-518d-40c0-93d2-2ed056306ca6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.