PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recirculating Airlift for Aeration of Shallow Water Bodies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article is devoted to solving the issue of ensuring the efficient operation of aeration equipment in the conditions of shallow water bodies with an average depth of only a few meters. The article offers a technical solution for reducing the size of airlift aerators and increasing their performance by creating a recirculation movement of water inside the unit. With the help of a laboratory model, it was established that the dynamics of oxygenation of water in the pool with the help of a recirculating airlift is subject to a logarithmic dependence on the size of the flow regulator. It was possible to increase the oxygen concentration in the pool by 2.6 times within three hours as part of the simulation. The rate of water oxygenation was much higher than for a conventional airlift of the same size. The offered cost-efficient aeration unit, which uses wind flow as an energy source, can be used for fish farms and other applications.
Twórcy
  • Donetsk National Technical University, Shybankova Sq., 2, Pokrovs’k, Donetsk region, 85300, Ukraine
  • Donetsk National Technical University, Shybankova Sq., 2, Pokrovs’k, Donetsk region, 85300, Ukraine
autor
  • Donetsk National Technical University, Shybankova Sq., 2, Pokrovs’k, Donetsk region, 85300, Ukraine
  • Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Onoprienka St., 8, Cherkasy, 18034, Ukraine
  • Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Onoprienka St., 8, Cherkasy, 18034, Ukraine
  • Cherkasy State Technological University, Shevchenko blvd, 460, Cherkasy, 18006, Ukraine
Bibliografia
  • 1. Abed R., Hussein M., Ahmed W., Abdou S. 2021. Two-Phase Flow Mass Transfer Analysis of Airlift Pump for Aquaculture Applications. Fluids, 6(6), 226. https://doi.org/10.3390/fluids6060226
  • 2. Bashutska U., Konieczny R. 2020. Determination of the environmental effect of the water pulverizing aerator in the conditions of Yavoriv artificial lake. Scientific Bulletin of UNFU, 30(5), 42–46. https://doi.org/10.36930/40300507
  • 3. Boog J., Nivala J., Aubron T., Wallace S., Sullivan C., Afferden M., Müller R. 2016. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump. Water, 8(11), 502. https://doi.org/10.3390/w8110502
  • 4. Chepak O., Kostenko V., Zavialova E. 2019. Method of cleaning of mine waters and restore the biological diversity of disturbed areas. Ecological Engineering & Environmental Technology, 20(3), 20–24. https://doi.org/10.12912/23920629/111774
  • 5. Dong H., Qiang Z., Li T., Jin H., Chen W. 2012. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. Journal of Environmental Sciences, 24(4), 596–601. https://doi.org/10.1016/S1001-0742(11)60804-8
  • 6. Ekhlas F., Nibras M., Ali M. 2020. The Effect of Air Injection System on Airlift Pump Performance. FME Transactions, 48(4), 800–807. https://doi.org/10.5937/fme2004800F
  • 7. Golosov S., Terzhevik A., Zverev I., Kirillin G., Engelhardt C. 2012. Climate change impact on thermal and oxygen regime of shallow lakes. Tellus: Series A, Dynamic Meteorology and Oceanography, 64, 1–12. https://doi.org/10.3402/tellusa.v64i0.17264
  • 8. Grebin V.V., Khilchevsky V.K. 2014. Water Fund of Ukraine: Artificial reservoirs – reservoirs and ponds. Interpress LTD, Kyiv.
  • 9. Janicka E., Kanclerz J., Wiatrowska K., Makowska M. 2016. Biogenic compounds and an eutrophication process of Raczyńskie lake. Ecological Engineering & Environmental Technology, 49, 124–130. https://doi.org/10.12912/23920629/64519
  • 10. Kasza H. 2017. Assessment of trophic state of reservoirs in southern Poland under diversified human impact. Ecological Engineering & Environmental Technology, 18(1), 78–87. https://doi.org/10.12912/23920629/66989
  • 11. Kostenko V., Zavialova O., Chepak O., Pokalyuk V. 2018. Mitigating the adverse environmental Impact resulting from closing down of mining enterprises. Mining of Mineral Deposits, 12, 105–112. https://doi.org/10.15407/mining12.03.105
  • 12. Kostenko V.K., Liashok Ya.O., Tavrel M.I., Zavialova O.L., Kostenko T.V., Bohomaz O.P. 2021. Airliftaerator. Patent for utility model 147906, Ukraine.
  • 13. Kostenko V., Tavrel M., Bohomaz O., Zavialova O., Kostenko T., Myhalenko K., Kostyrka O. 2022. Experimental Testing of Water Body Aeration Airlift Technology. Ecological Engineering & Environmental Technology, 23(3), 184–192. https://doi.org/10.12912/27197050/147635
  • 14. Luty P., Prończuk M. 2020. Determination of a Bubble Drag Coefficient during the Formation of Single Gas Bubble in Upward Coflowing Liquid. Processes, 8, 999. https://doi.org/10.3390/pr8080999
  • 15. Nowicka-Krawczyk P., Żelazna-Wieczorek J., Skrobek I., Ziułkiewicz M., Adamski M., Kaminski A., Żmudzki P. 2022. Persistent Cyanobacteria Blooms in Artificial Water Bodies – An Effect of Environmental Conditions or the Result of Anthropogenic Change. Journal of Environmental Research and Public Health, 19(12), 6990. https://doi.org/10.3390/ijerph19126990
  • 16. Sender J., Jaruga C. 2017. Eutrophication of water reservoirs and role of macrophytes in this process. Ecological Engineering & Environmental Technology, 18(3), 227–244. https://doi.org/10.12912/23920629/69374
  • 17. Shekk P.V. 2017. Industrial fish farming. TES, Odesa.
  • 18. Sherman I., Geina K., Kutishchev S., Kutishchev P. 2013. Ecological transformations of riverine hydroecosystems and current problems of fisheries. Ribogospodarsʹka Nauka Ukraïni, 4(26), 5–16. https://doi.org/10.15407/fsu2013.04.005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42ef59cc-133a-4c81-bcbb-068cb84c5571
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.