PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical profilometer with confocal chromatic sensor for high-accuracy 3D measurements of the uncirculated and circulated coins

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The term optical profilometry is used in relation to a group of methods used in a rapid, non-destructive, and non-contact assessment of surface topography. Those methods play a significant role in the area of a modern advanced laboratory and industrial 3D measurements. With the development of profilometric methods, a large progress in the construction of optical profilometric instruments and measuring sensors used in them, including confocal sensors based on the chromatic light aberration phenomenon (CLA) has been observed for several years. The paper shows that the Talysurf CLI 2000 multisensory optical profilometer equipped with a CLA sensor can be used in high-accuracy 3D measurements of the uncirculated and circulated coins. The assessment of such type objects characterized by a high variability of altitude can be extremely helpful in analyzing the actual metrological properties of measuring equipment used in their measurements.
Rocznik
Strony
181--192
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • Unconventional HydroJetting Technology Center, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • Department of Engineering and Technology Management, Technical University of Cluj Napoca, North University Center of Baia Mare, Dr. Victor Babes 62A, 430083, Baia Mare, Romania
  • Department of Industrial Design Engineering, Faculty of Technology, Karabük University, Demir–Çelik Kampüsü 78050 Karabük, Turkey
Bibliografia
  • 1. Whitehouse D.J. (2010) Handbook of surface and nanometrology (2nd Ed.). CRC Press, Boca Raton.
  • 2. Leach (Ed.) R. (2011). Optical measurement of surface topography. Springer, Berlin and Heidelberg.
  • 3. Leach R. (Ed.) (2013). Characterisation of areal surface texture. Springer, Berlin and Heidelberg.
  • 4. ISO EN 25178-6:2010 (2010). Geometrical Product Specifications (GPS) - Surface texture: Areal - Part 6: Classification of methods for measuring surface texture. European Committee for Standardization. Genève.
  • 5. Stout K.J. (Ed.) (2002). Development of methods for characterisation of roughness in three dimensions. Penton Press, London.
  • 6. Blunt L., Jiang X. (2003). Advanced techniques for assessment surface topography. Kogan Page Science, London.
  • 7. Mitić J., Anhut T., Meier M., Ducros M., Serov A., Lasser T. (2003). Optical sectioning in wide-field microscopy obtained by dynamic structured light illumination and detection based on a smart pixel detector array. Optics Letters, Vol. 28, No. 9, pp. 698-700.
  • 8. D'Acquisto L., Fratini L., Siddiolo A.M. (2002). A modified moiré technique for three-dimensional surface topography. Measurement Science and Technology, Vol. 13, No. 4, pp. 613-622.
  • 9. Qu X.H., Zhao X.H., Ye S.H. (2005). Defocusing detection of geometric sizes in micro-machining. Key Engineering Matererials, Vol. 295-296, pp. 125-132.
  • 10. Grimm T., Wiora G., Witt G. (2015). Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surface Topography: Metrology and Properties, Vol. 3, No. 1, p. 014001.
  • 11. de Groot P. (2015). Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics, Vol. 7, No. 1, pp. 1-65
  • 12. Kapłonek W., Nadolny K., Królczyk G.M. (2016). The use of focus-variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools. Measurement Science Review, Vol. 16, No. 2, pp. 42-53.
  • 13. Bristow T.C., Arackellian K. (1987). Surface roughness measurements using a Nomarski type scanning instrument. Proceedings SPIE, Vol. 749, pp. 114-118.
  • 14. Bhushan B., Wyant J.C., Koliopoulos C.L. (1985). Measurement of surface topography of magnetic tapes by Mirau interferometry. Applied Optics, Vol. 24, No. 10, pp. 1489-1497.
  • 15. Leonhardt K., Rippert K.H., Tiziani H.J. (1989). Optical methods of measuring rough surfaces. Proceedings SPIE, Vol. 1009, pp. 22-29.
  • 16. Sommargren G.E. (1981). Optical heterodyne profilometry. Applied Optics, Vol. 20, No. 4, pp. 610-618.
  • 17. Makosch G., Drollinger B. (1984). Surface profile measurement with a scanning differential AC interferometer. Applied Optics, Vol. 23, No. 24, pp. 4544-4553.
  • 18. Wyant J.C., Koliopoulos C.L., Bhushan B., George O.E. (1984). An optical profilometer for surface characterization of magnetic media. ASLE Transactions, Vol. 27, pp. 101-113.
  • 19. Downs M.J., McGivern W.H., Ferguson H.J. (1985). Optical system for measuring the profiles of supersmooth surfaces. Precision Engineering, Vol. 7, No. 4, pp. 211215.
  • 20. Lange S.R., Bhushan B. (1988). Use of two- and three- dimensional, noncontact surface profiler for tribology applications. Surface Topography, Vol. 1, No. 3, pp. 277290.
  • 21. Freischlad K. (2010). Optical surface profiling: Profilometer advances benefit surface analysis, film-thickness measurement. Laser Focus World, Vol. 46, pp. 1-1. Retrieved May 3, 2018, from https://www.laserfocus-world. com/articles/print/volume-46/issue-1/features/optical-surface-profiling.html
  • 22. Elmas S., Islam N., Jackson M.R., Parkin R.M. (2011). Analysis of profile measurement techniques employed to surfaces planed by an active machining system. Measurement, Vol. 44, No. 2, pp. 365-377.
  • 23. Guo D.M., Qin N., Kang R.K., Jin Z.J. (2008). Novel measurement technique on 3D surface topography of polishing pad. Advanced Materials Research, Vol. 53-54, pp. 265-272.
  • 24. Kapłonek W., Nadolny K., Tomkowski R., Valíček J. (2012). High-accuracy surface topography measurements of abrasive tools using a 3D optical profiling system. Measurement Automation and Monitoring, Vol. 58. No. 5, pp. 443-447.
  • 25. Marimont D.H., Wandell B.A. (1994). Matching color images: the effects of axial chromatic aberration. Journal of the Optical Society of America A, Vol. 11, No. 12, pp. 3113-3122.
  • 26. MacEvoy B. (2013). Astronomical Optics. Retrieved May 3, 2018, from https://www.handprint.com/ASTRO/ae4.html
  • 27. Molesini G., Pedrini G., Poggi P., Quercioli F. (1984). Focus-wavelength encoded optical profilometer. Optics Communications, Vol. 49, No. 4 , pp. 229-233.
  • 28. ISO EN 25178-602:2010 (2010). Geometrical Product Specifications (GPS) - Surface texture: Areal - Part 602: Nominal characteristics of non-contact (confocal chromatic probe) instruments. European Committee for Standardization, Genève.
  • 29. Ali S.H. (2012). Advanced nanomeasuring techniques for surface characterization. ISRN Optics, ID 859353, pp. 1-23.
  • 30. Svatoš M., Kopecký Z., Rousek M. (2014). Effects of the technolology of machining on the surface quality of selected wood. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Vol. 59, No. 6, pp. 329-336.
  • 31. Novák V., Rousek M., Kopecký Z. (2011). Assessment of wood surface quality obtained during high speed milling by use of non-contact method. Drvna Industrija, Vol. 62, No. 2, pp. 105-113.
  • 32. Leone C., Lopresto V., Iorio De I. (2009). Wood engraving by Q-switched diode-pumped frequency-doubled Nd: YAG green laser. Optics and Lasers in Engineering, Vol. 47, No. 1, pp. 161-168.
  • 33. Guo D.M., Qin N., Kang R.K., Jin Z.J. (2008). Novel measurement technique on 3D surface topography of polishing pad. Advanced Materials Research, Vol. 53-54, pp. 265272.
  • 34. Kubišová M., Pata V., Sýkorová L., Hýlová L., Šuba O. (2018). Multi-parameter surface-quality analysis. Materials and Technology, Vol. 52, No. 1, pp. 23-26.
  • 35. Islam N., Parkin R.M., Jackson M.R., Kesy Z. (2011). Development of a novel profile measurement system for actively planed surfaces. Measurement, Vol. 44, No. 2, pp. 466-477.
  • 36. Purushothaman J., Ramaseshan R., Albert S.K., Rajendran R., Gowrishankar N., Ramasubbu V., Murugesan S., Dasgupta Arup, Jayakumarba T. (2010) Influence of surface roughness and melt superheat on HDA process to form a tritium permeation barrier on RAFM steel. Fusion Engineering and Design, Vol. 101, pp. 154-164.
  • 37. Barletta M. (2009). Combined use of scratch tests and CLA profilometry to characterize polyester powder coatings. Surface and Coatings Technology, Vol. 203, No. 13, pp. 1863-1878.
  • 38. Barletta M., Bolelli G., Guarino S., Lusvarghi L., (2007). Development of matte finishes in electrostatic (EFB) and conventional hot dipping (CHDFB) fluidized bed coating process. Progress in Organic Coatings, Vol. 59, No. 1, pp. 53-67.
  • 39. Polini R., Barletta M. (2008). On the use of CrN/Cr and CrN interlayers in hot filament chemical vapour deposition (HF-CVD) of diamond films onto WC-Co substrates. Diamond and Related Materials, Vol. 17, No. 3, pp. 325-335.
  • 40. Komath M., Rajesh P., Muraleedharan C.V., Varma H.K., Reshmi R., Jayaraj M.K. (2001). Formation of hydroxyapatite coating on titanium at 200° C through pulsed laser deposition followed by hydrothermal treatment. Bulletin of Materials Science, Vol. 34, No. 2, pp. 389-399.
  • 41. Ghiban A., Jimenez Ballesta A.E., Gonzalez Morales N., Pirvulescu L.D., Ghiban B., Tiganescu T.V. (2016). Heat treatment influence on the wear behavior of Titanium-Molybdenum biomedical alloys. Materiale Plastice, Vol. 53, No. 3, pp. 485-490.
  • 42. Parthasarathi N.L., Utpal Borah, Albert S.K. (2013). Effect of temperature on sliding wear of AISI 316 L (N) stainless steel – Analysis of measured wear and surface roughness of wear tracks. Materials & Design, Vol. 51 pp. 676-682.
  • 43. Li J., Monaghan T., Masurtschak S., Bournias-Varotsis A., Friel R.J., Harris R.A. (2015). Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials. Materials Science and Engineering A, Vol. 639, pp. 474-481.
  • 44. Surman M. (2014). Design project of the coin orientation unit in the sorting device (MSc thesis). Koszalin University of Technology, Koszalin, Poland.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42ef47a1-60f0-4cba-86cb-47fac12d26a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.