PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil erosion prediction and risk assessment using RUSLE model and GIS techniques in the Nangka watershed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil erosion in the Nangka watershed has always been a matter of concern. Over the last decade, soil erosion has led to continuous environmental problems. A thorough examination of the extent of the problem was required to identify an appropriate soil conservation strategy within the watershed. This study was conducted to observe erosion rates and map out the erosion hazard level. Erosion predictions were analysed by using the Revised Universal Soil Loss Equation (RUSLE) model with the help of ArcGIS software. RUSLE was selected because of its quantitative ability to estimate average annual soil erosion and its compatibility with the GIS interface. The potential hazard of soil erosion was classified and ranked into five class categories as set by the national authority. The results reveal that the Nangka watershed is prone to soil erosion with the annual average values ranging from 1.33 Mg·ha-1·y-1 to 2472.29 Mg·ha-1·y-1. High soil erosion rates of 9.8% are in severe (class IV) and very severe (class V) conditions, primarily in the upper course of the watershed. The low annual average of soil erosion (class I and class II), which accounted for 75.95% of the total erosion, mostly took place in the steepness below 35%. The remaining area of 14.25% within the watershed is in moderate condition (class III). It is expected that the results of this study will help the authority in the implementation of soil conservation measures.
Wydawca
Rocznik
Tom
Strony
185--191
Opis fizyczny
Bibliogr. 30 poz., mapy, rys., tab.
Twórcy
autor
  • University of Mataram, Faculty of Engineering, Department of Civil Engineering, Center for Disaster Risk Management, Majapahit St, No. 62, Mataram, NTB, 83125, Indonesia
autor
  • Nusa Tenggara I River Basin Organisation, Mataram, NTB, Indonesia
autor
  • University of Mataram, Faculty of Engineering, Department of Civil Engineering, Center for Disaster Risk Management, Majapahit St, No. 62, Mataram, NTB, 83125, Indonesia
Bibliografia
  • ABDO S., SALLOUM J. 2017. Spatial assessment of soil erosion in Alqerdaha basin (Syria). Modeling Earth Systems and Environment. Vol. 3(26) p. 1–7. DOI 10.1007/s40808-017-0294-z.
  • AI L., FANG N.F., ZHANG B., SHI Z.H. 2013. Broad area mapping of monthly soil erosion risk using fuzzy decision tree approach: Integration of multi-source data within GIS. International Journal of Geographical Information Science. Vol. 27(6) p. 1251–1267. DOI 10.1080/13658816.2012.752095.
  • ARSYAD S. 1989. Konservasi tanah dan air [Soil and water conservation]. 3rd ed. Bogor. IPB Press. ISBN 9789794930038 pp. 290.
  • AZADBAKHT S., NOURI A., CHAN D. 2019. An analytical model for estimation of internal erosion rate. Geomechanics and Geoengineering. Vol. 15(1) p. 42–53. DOI 10.1080/17486025.2019.1602735.
  • BOLS P.L. 1978. The iso-erodent map of Java and Madura. Belgian Technical Assistance Project ATA 105. Bogor. Soil Research Institute pp. 39.
  • BPT 1985. Tabel nilai erodibilitas tanah [Table of soil erodibility factor]. Bogor. Balai Penelitian Tanah. Pusat Penelitian dan Pengembangan Pengairan.
  • FARHAN Y., NAWAISEH S. 2015. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environmental Earth Sciences. Vol. 74(6) p. 4649–4669. DOI 10.1007/s12665-015-4430-7.
  • GASHAW T., TULU T., ARGAW M. 2017. Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiophia. Environmental System Research. Vol. 6(1) p. 1–14. DOI 10.1186/s40068-016-0078-x.
  • GUO Q., WANG Z., ZHANG Q., ZHANG Q., SHEN N., WU B., TIAN N., LIU J. 2020. Quantifying sheet erosion rate on steep grassland in the Loess region in China. Archives of Agronomy and Soil Science. Vol. 67(11) p. 1554–1565. DOI 10.1080/03650340.2020.1800641.
  • KINNELL P.I.A. 2014. Geographic variation of USLE/RUSLE erosivity and erodibility factors. Journal of Hydrologic Engineering. Vol. 20(6), C4014012. DOI 10.1061/(ASCE)HE.1943-5584.0001143.
  • LANORTE A., CILLIS G., CALAMITA G., NOLE G., PILOGALLO A.,TUCCI B., DE SANTIS F. 2019. Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomatics, Natural Hazard and Risk. Vol. 10(1) p. 1563–1595. DOI 10.1080/19475705.2019.1578271.
  • LEE E., AHN S., IM S. 2017. Estimation of soil erosion rate in the Democratic People’s Republic of Korea using the RUSLE model. Forest Science and Technology. Vol. 13(3) p. 100–108. DOI 10.1080/21580103.2017.1341435.
  • LI X., WEI X. 2014. Analysis of the relationship between soil erosion risk and surplus flood water during flood season. Journal of Hydrologic Engineering. Vol. 19(7) p. 1294–1311. DOI 10.1061/(ASCE)HE.1943-5584.0000912.
  • MALLICK J., ALASHKER Y., MOHAMMAD S.A., AHMED M., HASAN M.A. 2014. Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Geocarto International. Vol. 29(8) p. 915–940. DOI 10.1080/10106049.2013.868044.
  • MCCOOL D.K., FOSTER G.R., RENARD K.G., YODER D.C., WEESIES G.A. 1995. The revised universal soil loss equation. San Antonio, TX. Department of Defense pp. 9.
  • MKRI 2009. Peraturan Menteri Kehutanan Republik Indonesia No. P.32/MENHUT-II/2009 tentang tata cara penyusunan rencana teknik rehabilitasi hutan dan lahan daerah aliran sungai [Ministry of Forestry Regulation No. P.32/MENHUT-II/2009 regarding the guidelines for planning arrangement of forest and watershed rehabilitation techniques]. Jakarta. Menteri Kehutanan Republik Indonesia pp. 123.
  • NT I RBO 2013. Laporan detail desain pengendalian banjir sedimen di kawasan Belanting pasca bencana 2012 di Kabupaten Lombok Timur [Detailed design report on sediment flood control in the Belanting area after the 2012 disaster in East Lombok Regency]. Mataram. Nusa Tenggara I River Basin Organization. Kementerian Pekerjaan Umum Rakyat dan Perumahan Rakyat pp. 221.
  • PANDEY S., KUMAR P., ZLATIC M., NAUTIYAL R., PANWAR V.P. 2021. Recent advances in the assessment of soil erosion vulnerability in watersheds. Glasnik Sumarskogo fakulteta p. 9–32. DOI 10.2298/GSF2123009P.
  • PROFFIIT A.P.B. 1983. Soil erosion mapping and erosion risk assessment in North Wales – a geomorphological approach. South African Geographical Journal. Vol. 65(2) p. 111–123. DOI 10.1080/03736245.1983.10559677.
  • QIWEI C., KANGNING X., RONG Z. 2020. Assesment on erosion risk based on GIS in typical Karst region of Southwest China. European Journal of Remote Sensing. Vol. 54 p. 1–12. DOI 10.1080/22797254.2020.1793688.
  • RENARD K.G., FOSTER G.R., WEESIES G.A., PORTER J.P. 1991. RUSLE: Revised Universal Soil Loss Equation. Journal of Soil Water Conservation. Vol. 46(1) p. 30–33.
  • RIZEEI H.M., SAHARKHIZ M.A., PRADHAN B., AHMAD N. 2016. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International. Vol. 31(10) p. 1158–1177. DOI 10.1080/10106049.2015.1120354.
  • ROWLANDS L. 2019. Erosion and sediment control–WSUD during the construction phase of land development. Chapter 8. In: Approaches to water sensitive urban design: potential, design, ecological health, economics, policies and community perceptions. Ed. A.K. Sharma, T. Gardner, D. Begbie. Woodhead Publishing p. 163–176. DOI 10.1016/B978-0-12-812843-5.00008-3.
  • SAADI Y., SAIDAH H., IRAWAN L.D.B. 2010. Tinjauan terhadap Indeks dan Kelas Bahaya Erosi pada sub daerah aliran sungai Tanggek [Overview of erosion hazard index and erosion class in Tanggek watershed]. Konferensi Nasional Teknik Sipil 4. Sanur-Bali, 2–3 Juni 2010 p. 467–476.
  • SCHMIDT S., ALEWELL C., MEUSBURGER K. 2019. Monthly RUSLE soil erosion risk of Swiss grasslands. Vol. 15(2) p. 247–256. DOI 10.1080/17445647.2019.1585980.
  • SHARMA A. 2010. Integrating terrain and vegetation indices for identifying potential soil erosion risk area. Geo-spatial Information Science. Vol. 13(3) p. 201–209. DOI 10.1007/s11806-010-0342-6.
  • SRINIVASAN R., KARTHIKA K.S., SUPUTHRA S.A., CHANDRAKALA M., HEDGE R. 2021. Mapping of soil erosion and probability zones using remote sensing and GIS in arid part of South Deccan Plateau, India. Journal of the Indian Society of Remote Sensing. Vol. 49 p. 2407–2423. DOI 10.1007/s12524-021-01396-5.
  • VIJITH H., DODGE-WAN D. 2020. Spatial and temporal characteristic of soil erosion and identification of source contributors of sediments in the tropical rainforest region of Borneo. Hydrological Sciences Journal. Vol. 65(16) p. 2797–2815. DOI 10.1080/02626667.2020.1836372.
  • WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses: A guide to conservation planning. US Department of Agriculture. Handbook No. 537 pp. 58.
  • ZHANG Y., YANG H., DU M., TANG X., ZHANG H., PENG B. 2003. Soil erosion study on hillside in Southern Jiangsu Province using the cesium-137 tracer technique. Soil Science and Plant Nutrition. Vol. 49(1) p. 85–92. DOI 10.1080/00380768.2003.10409983.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42e9cd38-8f8a-4a10-a203-5a5a2273f9ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.