
10BMI 2015, TOM 2, s. 10-15, www.bullmaritimeinstitute.com� DOI: 10.5604/12307424.1158133

PRACE ORYGINALNE / ORYGINAL ARTICLES

Analysis of parallelisation of 3D-CEMBS
model using technologies like OpenACC
and OpenMP
Analiza możliwości zrównoleglenia modelu 3D-CEMBS
z wykorzystaniem technologii typu OpenACC i OpenMP

Piotr Piotrowski
Maritime Institute in Gdańsk, Poland

ABSTRACT: Oceanographic models utilise parallel computing techniques to increase their performance. Computer hardware
constantly evolves and software should follow to better utilise modern hardware potential. The number of CPU cores with access
to shared memory increases with hardware evolution. To fully utilise the possibilities new hardware presents, parallelisation tech-
niques employed in oceanographic models, which were designed with distributed memory systems in mind, have to be revised.
This research focuses on analysing the 3D-CEMBS model to assess the feasibility of using OpenMP and OpenACC technologies
to increase performance. This was done through static code analysis and profiling. The findings show that the main performance
problems are attributed to task decomposition that was designed with distributed memory systems in mind. To fully utilise mo-
dern shared memory systems, other task decomposition strategies need to be employed.
The presented 3D-CEMBS model analysis is a first stage in wider research of oceanographic models as a specific class of
parallel applications. In the long term the research will result in proposing design patterns tailored for oceanographic models
that would exploit their characteristics to achieve better hardware utilisation on evolving hardware architectures.

KEYWORDS: 3D-CEMBS • parallel computing • MPI • OpenMP • OpenACC • distributed memory • shared memory

STRESZCZENIE: Modele oceanograficzne wykorzystują przetwarzanie równoległe dla zwiększenia wydajności. Sprzęt kom-
puterowy ciągle ewoluuje, więc oprogramowanie powinno zmieniać się razem z nim, aby w pełni wykorzystać potencjał
współczesnego sprzętu. Wraz z rozwojem sprzętu komputerowego zwiększa się liczba rdzeni procesorów, które mają do-
stęp do pamięci współdzielonej. Aby w pełni wykorzystać możliwości nowego sprzętu, techniki zrównoleglania wykorzy-
stywane w modelach oceanograficznych muszą zostać zrewidowane. Modele oceanograficzne były często projektowane
z myślą o systemach z pamięcią rozproszoną. Niniejsze badania skupiają się na analizie modelu 3D-CEMBS pod kątem
możliwości wykorzystania technologii OpenMP i OpenACC w celu podniesienia wydajności modelu. W tym celu została
przeprowadzona statyczna analiza kodu modelu oraz profilowanie. Wyniki badań pokazują, że główny problem wydajno-
ściowy modelu jest wynikiem zastosowania dekompozycji zadań przewidzianej dla systemów z pamięcią rozproszoną. Aby
w pełni wykorzystać współczesne komputery z pamięcią współdzieloną należy wprowadzić inne strategie dekompozycji
zadań.

SŁOWA KLUCZOWE: 3D-CEMBS • przetwarzanie równoległe • MPI • OpenMP • OpenACC • pamięć rozproszona •
pamięć dzielona

11www.bullmaritimeinstitute.com

PRACE ORYGINALNE / ORYGINAL ARTICLES
BULLE TIN OF MARITIME INSTITUTE

INTRODUCTION

Oceanographic models play an important role in operational
oceanography. Apart from the accuracy and the like attributes of
the model forecasts, model performance is also crucial. Model
performance is important for several reasons. First of all, if a fore-
cast is to be used for operational purposes it has to be computed
within a prescribed amount of time. This time limit can vary de-
pending on the particular purpose or the forecast length, however
2 hours is a common time limit to finish a forecast. Moreover, the
faster the model is, the longer forecast can be computed within
the same time limit. This is important if the forecast is used for
planning purposes like flood prevention, etc. Model performance
also has an economic aspect – the more efficient the model is,
the less power it consumes. Also if the model is more efficient,
cheaper hardware can be used to perform the computations.

This research focuses on model parallelisation as a perfor-
mance improvement method. Nowadays, Message Passing
Interface (MPI) [9] is commonly used for model parallelisation.
This research analysis OpenMP [12] and OpenACC [11] as tech-
nologies that could potentially improve model performance.

PARALLELISATION TECHNOLOGIES
There are many technologies that can be used to facilitate
parallel programming paradigm. This research focuses on the
usage of three of them: MPI, OpenMP and OpenACC. These
three technologies represent three different parallelisation
models and the conclusions can be easily generalised to other
technologies corresponding to those models.

Message Passing Interface

Message Passing Interface (MPI) [9] is a parallelisation technol-
ogy commonly used in cluster environments. It is a de facto
standard for oceanographic models. Its design comes from the
early nineties and was tailored for computer systems with dis-
tributed memory. MPI applications were originally run on many
connected nodes, each of which had only few CPU cores and
little RAM memory. Even if a node has several CPU cores, MPI
application ignores this fact. MPI application consists of a set of
processes. Each process communicates with others as if they
were on separate nodes. This is convenient as processes do not
have to know if their siblings are on the same node or not. Thanks
to this design all communication from the process point of view is
done in a uniform manner and it is the role of the MPI implemen-
tation to decide what medium to use for communication: TCP/
IP network, other network protocols if appropriate hardware is
available or shared memory if processes are on the same node.

However, since the nineties computer hardware changed.
Nowadays computer nodes in clusters have several dozens of
CPU cores ranging from 24 to even 64 cores. A single node can
feature even 1 TB of shared RAM, with 128 or 256 GB of RAM
being quite common. These changes in hardware availability
should be taken into account when writing parallel applica-

tions like oceanographic models. Especially important is the
availability of large memory shared among many CPU cores.

MPI was designed for systems with distributed memory and
is still important if models require multiple nodes to be com-
puted within a satisfactory time frame. However, there are
more efficient ways to parallelise software if it fits a single
shared memory system.

OpenMP

OpenMP [12] is a thread based parallelisation technology.
This makes it complementary to MPI. MPI was designed to
facilitate communication between nodes, while OpenMP
is designed to parallelise work within a single node using
shared memory for communication. Even though MPI imple-
mentation can also use shared memory as a communication
medium, memory copying is performed between private
memory spaces of two or more processes. In OpenMP com-
munication is a zero-copy communication: that is a thread
can have direct access to other thread’s memory without
the need for copying.

There is a number of thread based technologies. Practically
every modern programming language has its own thread based
API, while native threading is usually done using Pthreads in
POSIX compliant environments. Fortran lags behind in this
respect with some additions concerning parallel computing in
Fortran 2008 that resemble MPI computation model.

OpenMP was chosen in this research for its ease of use
achieved thanks to declarative programming paradigm. Ap-
propriately annotating source code indicating what parts can
be computed in parallel is sufficient to achieve a significant
parallelisation level in many typical cases. Moreover, OpenMP
gained wide adoption. It is supported by commercial compilers
like the PGI compiler as well as open source compilers like GCC.

OpenACC

The third technology considered in this research is
OpenACC [11]. This technology allows the usage of GPUs
for numerical computations – general-purpose computing
on graphics processing units (GPGPU). Again there are other
GPGPU technologies like OpenCL or CUDA, but OpenACC has
been chosen due to its simplicity and therefore easier assess-
ment of feasibility of using GPGPU for oceanographic models.
Its adoption by compilers also increases and it is implemented
by commercial compilers like the PGI compiler, but also by open
source compilers, for example GCC starting from version 5.

The design of OpenACC is similar to that of OpenMP – it also
conforms to declarative programming paradigm. Similarly to
OpenMP, with OpenACC one annotates source code fragments
to indicate that it can be computed in parallel on a GPU. There
are also additional annotations that can help with memory man-
agement, since CPU and GPU usually have separate memory

12

PRACE ORYGINALNE / ORYGINAL ARTICLES
BULLE TIN OF MARITIME INSTITUTE

BMI 2015, TOM 2, s. 10-15

pools. This can change however with the adoption of hetero-
geneous system architecture (HSA) [6] that facilitates unified
memory model. HSA can potentially improve performance of
OpenACC annotated code, but HSA supporting hardware is
still not common and HSA as a technology is still in its devel-
opment state.

MODEL ANALYSIS
To analyse parallelisation of the 3D-CEMBS model, [2, 3, 4, 10]
static code analysis and model profiling were performed. Code
analysis was conducted to see what technologies and paral-
lelisation methods are already used in the model. Moreover,
static code analysis reveals fragments of code that adhere to
code patterns that are inherently prone to parallelisation. Profil-
ing reveals which fragments of code are the bottlenecks and
allows an estimation of potential benefits of improvements of
particular code fragments.

Code analysis

3D-CEMBS utilises MPI as the main parallelisation technology,
but also uses OpenMP. OpenMP is used in a way similar to
MPI, that is the task decomposition is block based [7, 8]. This
way OpenMP does not utilise the full potential of the shared
memory architecture, since such task decomposition was ini-
tially designed for distributed memory systems. This requires
synchronisation between each block and the more blocks there
are the more effort is put into data synchronisation. Moreover,
the blocks representing individual tasks are intentionally small
to improve load balancing and to remove more land represent-
ing grid cells from computations. However, this is done at
a price – increased communication time.

Static code analysis also revealed some code that could be
refactored to improve sequential performance. The code shown
in Figure 1 copies large amounts of memory. This code is paral-
lelised using OpenMP, however such code in general should not

be necessary at all. It does not perform any computations, but
moves memory from one place to another. Such code should
be substituted by reference swapping or a similar technique
– it does not matter where some value resides in memory as
long as we have a reference or a pointer to the correct place.
Memory in computer systems is much slower than the CPU,
therefore memory copying is relatively a very slow task. In some
cases time spent on memory access can dominate over time
spent on floating point computations.

Code similar to that in Figure 1 can also be found in other oceano-
graphic models, for example in WAM wave model [14]. This cod-
ing pattern might have come from the lack of reference or pointer
like features in early Fortran language versions. This shows that
the choice of programming language might influence coding
techniques that can influence performance. Unfortunately once
implemented, such patterns are hard to remove from code. This
is partly a consequence of using global variables. Direct usage
of global variables makes it harder to just swap references to
memory. The use of global variables also makes the code harder
to refactor in order to remove such coding patterns, because
a change of a global variable would require changing all its
usages, also indirect usages, throughout the code. Although
dominant in oceanographic models, Fortran might not be the
best choice of language to write high quality code with, since it
encourages obsolete programming techniques [1].

Profiling

Profiling of the model is necessary to conduct performance
analysis, because it shows where the real bottlenecks are.
Profiling of the model was performed on a setup running on
16 CPU cores communicating using MPI. 16 CPU cores is not
a large number, but was enough to reveal poor scalability being
the result of communication overhead.

Statistically, computer applications spend most of their time
in a relatively small amount of code. Time spent executing the

Figure 1. Memory copying using OpenMP

13www.bullmaritimeinstitute.com

PRACE ORYGINALNE / ORYGINAL ARTICLES
BULLE TIN OF MARITIME INSTITUTE

prepared model setup was distributed among many procedures,
without an apparent bottleneck (see Table I). In such a situation
it is hard to make performance improvements, because any sin-
gle change has minimal impact on the overall execution time.
However, more detailed analysis of the top five time consuming
procedures revealed that in fact three of them are procedures
handling synchronisation between individual blocks. Another
procedure is the one from which the code in Figure 1 was ta-
ken. Only one of the top five procedures performs actual model
computations.

Optimisation of any of the procedures would have negligible
impact on the overall performance. However, the three procedu-
res responsible for synchronisation between individual blocks
sum up to 16% of the overall execution time. 16% is a significant
amount of time. This time can be reduced or even eliminated
by changing task decomposition from the block based.

The procedure that performs extensive memory copying uses
5% of the overall execution time. This adds up to 21% of the ove-
rall execution time that can be potentially optimised, by chan-
ging task decomposition and refactoring the code not to use
global variables and then removing unnecessary memory copy-
ing. Often the main optimisation efforts are focused on floating
point computation performance. Profiling of this model shows
that task decomposition and memory management issues
can become dominant problems over the raw computational
performance. This has yet another consequence: OpenACC,
which focuses on floating point computation performance,
cannot improve performance of the model without changing
the model architecture and task decomposition first.

RECOMMENDATIONS
To improve the 3D-CEMBS model performance a major change
in task decomposition has to be made. Moreover, to fully utilise
the full potential of systems with shared memory, OpenMP
cannot be used as a substitute to MPI following the same
patterns. Different design assumptions of OpenMP require
a different approach than that from MPI. Otherwise the capa-
bilities of OpenMP are not fully exploited. These are, however,
major architectural changes and require significant effort to
implement. The required work is programming, but also rese-
arch on possible task decompositions.

Task decomposition
The block based task decomposition used in the 3D-CEMBS
model [7, 8] was designed for systems with distributed memory.
Even though assumptions valid for distributed memory archi-
tectures can be adhered to in a shared memory system, they
are nonetheless more restrictive than they need to be. This
causes the potential of shared memory to be wasted.

Much of the computations in oceanographic models is solving
systems of linear equations. Solving systems of linear equa-
tions can be reduced to matrix multiplication, which is inher-
ently well suited for parallelisation. However, depending on the
particular numerical scheme used, other task decompositions
might be better suited. For example in the alternate direction
implicit method, (ADI) [13] each row or column of the domain
(depending on the current algorithm step) can be computed
independently. This constitutes a good task decomposition, but
requires shared memory due to the algorithm’s row/column
alternating nature. Other numerical schemes might have some
other good decompositions.

In shared memory systems task decomposition can be
accomplished in such a variety of ways that it has to be
considered on a case by case basis – there is no silver bul-

Table I CEMBS model profiling results

Figure 2. Block decomposition with 1 cell wide halo region

14

PRACE ORYGINALNE / ORYGINAL ARTICLES
BULLE TIN OF MARITIME INSTITUTE

BMI 2015, TOM 2, s. 10-15

let. The block based decomposition that was justified for
distributed memory systems causes a number of problems
that have to be handled by sacrificing performance. These
problems are mainly communication, memory and compu-
tation overheads.

The block decomposition used in the 3D-CEMBS model and
many other oceanographic models [5, 15] requires the so called
halo region (see Figure 2). The values in the cells in the halo
region need to be exchanged between neighbouring blocks –
this is an obvious overhead. However, that is not the only over-
head. The cells in the halo region need to be stored in memory
– that means more memory is required after decomposition
than for the undivided task. The model manual [16] suggests
blocks of 20-40 cells in each dimension. With 2 cells wide halo
region that makes 10-20% more points to be stored in memory.
Those cells are not only stored, but also need to be computed,
so if the blocks are small, the overhead becomes significant.

The domain decomposition to small blocks also has another
disadvantage. It makes it harder to use GPGPU technologies like
OpenACC. GPUs are excellent in matrix based computations,
but if the matrix is divided into relatively small blocks, then more
effort is put into block management than into floating point
computations, making the use of GPGPU infeasible.

Block based task decomposition and distribution on distributed
memory systems is static. The distribution is done once at the
beginning of the model run. With the use of shared memory
the task distribution can be dynamic between threads running
on the same node. This can help to better utilise the hardware,
thanks to better load balancing. With static load balancing all
decisions need to be made a priori based on some assump-
tions on the runtime environment – assumptions concerning
hardware parameters as well as resource utilisation by other
software. However, the runtime environment is not static, but
changes with time. Even if the parallel tasks were evenly distri-
buted among processes or threads, the tasks might finish at
different times. This can be caused by a number of reasons. For
example if threads read or write data to a persistent storage,
the storage access times might not be deterministic, which in
effect might lead to different execution times of theoretically
identical tasks. Another example might be when tasks are
executed on hardware with technologies like hyper-threading,
where two processes or threads executed on a single CPU core
compete for CPU resources. Such examples are numerous,
therefore employing dynamic task distribution between CPU
cores should lead to better hardware utilisation and shorter
execution times.

On a shared memory hardware architecture dynamic load ba-
lancing is fairly easy. A typical approach is to establish a thread
pool and a task queue. As soon as a thread finishes one task
it gets a new task from the queue. The greater the number of
parallel tasks in comparison with the thread pool size the more
evenly the tasks can be distributed. Nevertheless the tasks
themselves cannot be too small, because that might lead to

using more time on task management than on computations
themselves. Therefore a proper task decomposition is the key
for better parallelisation and hardware utilisation. Moreover,
some kind of priority queue can be employed for better load
balancing if for example, the tasks are unevenly sized and the
task size can be easily estimated.

With a distributed memory architecture, such dynamic load
balancing is much harder and might come at a significant
computational price making it fruitless or even counter-pro-
ductive. However, since today’s hardware allows execution of
several dozens of threads with shared memory, this can be
easily exploited to balance the load within a single node and
thus shorten execution times on individual nodes.

Hierarchical parallelisation architecture

MPI, OpenMP and OpenACC are complementary technologies.
They should be used in tandem for the best hardware utilisa-
tion. Even though some use cases might overlap between
those technologies, their design assumptions are different and
therefore should be treated differently. Usage patterns that are
efficient for MPI might be suboptimal for OpenMP and counter-
productive in case of OpenACC. For optimal hardware utilisation
a hierarchical parallelisation architecture can be employed.

Since high resolution oceanographic models might require not
several dozen, but over a hundred CPU cores for operational fo-
recasts to execute within a satisfactory time limit, MPI or other
distributed memory based technologies are needed to facilitate
communication between several computer nodes. However, within
a single node with shared memory a thread based parallelisation
solution might be better. It is important to note that a different task
decomposition might be required for task distribution between
CPU cores than that for tasks distributed between computer no-
des. The third level of parallelisation might be the GPGPU usage.
GPGPU parallelisation is different than the process or thread based
parallelisation, therefore a proper task decomposition has to be
implemented. Another thing to consider when employing GPGPU
is the number of accelerators available and how that number
corresponds to the CPU core count. Proper distribution of tasks
between threads and accelerators is crucial.

SUMMARY
The performed code analysis and profiling of the 3D-CEMBS mo-
del showed that the model’s bottleneck are not the floating point
computations, but communication and memory management.

To improve memory management the code should be re-
factored to remove global variable usage. Since Fortran,
the dominant language the model was written in, is an old
programming language, it encourages old programming
techniques that are no longer adequate for today’s needs.
Adhering to modern programming paradigms could improve
maintainability of the code and even have a positive influence
on model performance.

15www.bullmaritimeinstitute.com

PRACE ORYGINALNE / ORYGINAL ARTICLES
BULLE TIN OF MARITIME INSTITUTE

The main performance problem of the 3D-CEMBS model
is the communication bottleneck. It is caused by the task
decomposition that was designed for distributed memory
systems. Changing the task decomposition and utilising
OpenMP or other thread based technology could improve the
model performance. Choosing the right task decomposition
for oceanographic models is a topic open for research.

otrzymano/received: 20-04-2015
zaakceptowano/accepted: 02-06-2015
opublikowano/published: 26-06-2015

Adres do korespondencji:
e-mail: ppiotrowski@im.gda.pl

Tables: 1
Figures: 2
References: 16

DOI: 10.5604/12307424.1158133
www.bullmaritimeinstitute.com/fulltxt.php?ICID=1158133

Since floating point computation performance is not the
bottleneck in 3D-CEMBS, the usage of OpenACC cannot
improve the model performance. However, if the commu-
nication overhead is reduced or eliminated and numerical
computations become the dominant part of the model, then
using OpenACC or other GPGPU technology could be once
again considered.

[1]	 Dijkstra, E. W. (1972). The humble programmer. Communications of the
ACM, 15 (10), 859–866.

[2]	 Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A. (2013).
Activation of the operational ecohydrodynamic model (3D CEMBS) – the
hydrodynamic part. OCEANOLOGIA, 55 (3), 519–541.

[3]	 Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J. (2013).
Activation of the operational ecohydrodynamic model (3D CEMBS) – the
ecosystem module. OCEANOLOGIA, 55 (3), 543–572.

[4]	 Dzierzbicka-Głowacka, L., Nowicki, A., Janecki, M. (2014). The Automatic
Monitoring System for 3D-CEMBSv2 in the Operational Version. Journal of
Environmental Science and Engineering Technology, 2014 (1), 1–9.

[5]	 Funkquist, L., Kleine, E. (2007). An introduction to HIROMB, an operational
baroclinic model for the Baltic Sea. REPORT OCEANOGRAPHY, 37.

[6]	 HSA Foundation (2015). HSA Platform System Architecture Specification.

[7]	 Jones, P. W., Worley, P. H., Yoshida, Y., White III, J. B., Levesque, J. (2005).
Practical performance portability in the Parallel Ocean Program (POP).
Concurrency: Practice and Experience, 17 (10), 1317–1327.

[8]	 Kerbyson, D. J., Jones, P. W. (2005). A performance model of the Parallel
Ocean Program. International Journal of High Performance Computing
Applications, 19 (3), 261–276.

[9]	 Message Passing Interface Forum (1997). MPI-2: Extensions to the
Message-Passing Interface.

[10]	 Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M. (2014).
Assimilation of the satellite SST data in the 3D CEMBS model.
OCEANOLOGIA, 57 (1).

[11]	 OpenACC-Standard.org (2013). The OpenACC Application Programming
Interface.

[12]	 OpenMP Architecture Review Board (2013). OpenMP Application Program
Interface.

[13]	 Peaceman, D. W., Rachford Jr., H. H. (1955). The numerical solution of
parabolic and elliptic differential equations. Journal of the Society for
Industrial and Applied Mathematics, 3 (1), 28–41.

[14]	 Piotrowski, P. (2014). Running WAM wave model on GPGPU. In 7th
EuroGOOS conference. Lisbon.

[15]	 Singhal, S., Aneja, S., Liu, F., Real, L. V., George, T. (2014). IFM: A Scalable
High Resolution Flood Modeling Framework. Lecture Notes in Computer
Science, 8632, 692–703.

[16]	 Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., et al. (2010). The Parallel Ocean
Program (POP) Reference Manual. Los Alamos National Laboratory.

References:

