PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ammonium-Assisted Intercalation of Java Bentonite as Effective of Cationic Dye Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modification of Java bentonite assists by the multi-step intercalation of sodium and ammonium ions under low-temperature preparation. The adsorbent was examined to remove rhodamine B and methylene blue dyes in an aqueous solvent. The analysis of structural changes conducted by XRD analysis showed the peak shifting from 19.89° to 16.1° and specific peak spectra FTIR of 2846.93 cm-1 due to increase basal spacing from ammonium intercalation. The total capacities of NH-bentonite, Na-bentonite, and Natural Bentonite adsorption to rhodamine B were 192.308 mg/g, 136.936 mg/g, and 116.279 mg/g, respectively, under acidic conditions. Furthermore, the total capacities of NH-bentonite, Na-bentonite, and Natural Bentonite adsorption to methylene blue were 270.27 mg/g, 158.73 mg/g, and 136.986 mg/g, respectively, under alkaline conditions. The adsorption mechanism described that the rhodamine B and methylene blue removal occurred endothermically, was feasible, and adhered to the kinetics model of pseudo-second-order and Langmuir isotherm. It concluded that the modified Java Bentonite from multi-step intercalation is affordable and effective as wastewater treatment.
Rocznik
Strony
184--195
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Graduate School, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
autor
  • Pharmaceutical Department, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
Bibliografia
  • 1. Adane, T., Hailegiorgis, S.M., Alemayehu, E. 2022. Acid-activated bentonite blended with sugarcane bagasse ash as low-cost adsorbents for removal of reactive red 198 dyes. Journal of Water Reuse and Desalination. https://doi.org/10.2166/wrd.2022.056
  • 2. Allaoui, S., Naciri Bennani, M., Ziyat, H., Qabaqous, O., Tijani, N., Ittobane, N. 2020. Kinetic Study of the Adsorption of Polyphenols from Olive Mill Wastewater onto Natural Clay: Ghassoul. Journal of Chemistry, 2020, 1–11. https://doi.org/10.1155/2020/7293189
  • 3. Andrunik, M., Bajda, T. 2019. Modification of bentonite with cationic and nonionic surfactants: Structural and textural features. Materials, 12(22). https://doi.org/10.3390/ma12223772
  • 4. Barakan, S., Aghazadeh, V. 2021. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. Environmental Science and Pollution Research, 28(3), 2572–2599. https://doi.org/10.1007/s11356-020-10985-9
  • 5. Câmara, A.B.F., Sales, R.V., Bertolino, L.C., Furlanetto, R.P.P., Rodríguez-Castellón, E., de Carvalho, L.S. 2020. Novel application for palygorskite clay mineral: a kinetic and thermodynamic assessment of diesel fuel desulfurization. Adsorption, 26(2), 267–282. https://doi.org/10.1007/s10450-019-00144-z
  • 6. Chopra, M., Drivjot, Amita. 2012. Adsorption of Dyes from Aqueous Solution Using Orange Peels: Kinetics and Equilibrium Studies. Journal of Advanced Laboratory Research in Biology, 3(1), 1–8.
  • 7. Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
  • 8. de Morais Pinos, J.Y., de Melo, L.B., de Souza, S.D., Marçal, L., de Faria, E.H. 2022. Bentonite functionalized with amine groups by the sol-gel route as efficient adsorbent of rhodamine-B and nickel (II). Applied Clay Science, 223, 106494. https://doi.org/10.1016/j.clay.2022.106494
  • 9. Funes, I.G.A., Peralta, M.E., Pettinari, G.R., Carlos, L., Parolo, M.E. 2020. Facile modification of montmorillonite by intercalation and grafting: The study of the binding mechanisms of a quaternary alkylammonium surfactant. Applied Clay Science, 195, 105738. https://doi.org/10.1016/j.clay.2020.105738
  • 10. Gao, S., Wang, D., Huang, Z., Su, C., Chen, M., Lin, X. 2022. Recyclable NiO/sepiolite as adsorbent to remove organic dye and its regeneration. Scientific Reports, 12(1), 2895. https://doi.org/10.1038/s41598-022-06849-6
  • 11. Gillman, P.K. 2011. CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. Journal of Psychopharmacology, 25(3), 429–436. https://doi.org/10.1177/0269881109359098
  • 12. Gupta, V.K., Suhas, Ali, I., Saini, V.K. 2004. Removal of Rhodamine B, Fast Green, and Methylene Blue from Wastewater Using Red Mud, an Aluminum Industry Waste. Industrial & Engineering Chemistry Research, 43(7), 1740–1747. https://doi.org/10.1021/ie034218g
  • 13. He, H., Chai, K., Wu, T., Qiu, Z., Wang, S., Hong, J. 2022. Adsorption of Rhodamine B from Simulated Waste Water onto Kaolin-Bentonite Composites. Materials, 15(12), 4058. https://doi.org/10.3390/ma15124058
  • 14. Hidalgo-Herrador, J.M., Tišler, Z., Hajková, P., Soukupová, L., Zárybnická, L., Černá, K. 2017. Cold Plasma and Acid Treatment Modification Effects on Phonolite. Acta Chimica Slovenica, 598–602. https://doi.org/10.17344/acsi.2017.3343
  • 15. Imgharn, A., Anchoum, L., Hsini, A., Naciri, Y., Laabd, M., Mobarak, M., Aarab, N., Bouziani, A., Szunerits, S., Boukherroub, R., Lakhmiri, R., Albourine, A. 2022. Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights. Chemosphere, 295, 133786. https://doi.org/10.1016/j.chemosphere.2022.133786
  • 16. Inyinbor, A.A., Adekola, F.A., Olatunji, G.A. 2015. Adsorption of Rhodamine B dye from aqueous solution on Irvingia gabonensis biomass: Kinetics and thermodynamics studies. South African Journal of Chemistry, 68. https://doi.org/10.17159/0379-4350/2015/v68a17
  • 17. Islam, M.R., Mostafa, M.G. 2022. Adsorption kinetics, isotherms and thermodynamic studies of methyl blue in textile dye effluent on natural clay adsorbent. Sustainable Water Resources Management, 8(2), 52. https://doi.org/10.1007/s40899-022-00640-1
  • 18. Italiya, G., Ahmed, M.H., Subramanian, S. 2022. Titanium oxide bonded Zeolite and Bentonite composites for adsorptive removal of phosphate. Environmental Nanotechnology, Monitoring & Management, 17, 100649. https://doi.org/10.1016/j.enmm.2022.100649
  • 19. Iwuozor, K.O. 2019. Prospects and Challenges of Using Coagulation-Flocculation Method in the Treatment of Effluents. In Advanced Journal of Chemistry-Section A, 2(2). http://ajchem-a.com
  • 20. Jabar, J.M., Odusote, Y.A., Alabi, K.A., Ahmed, I.B. 2020. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Applied Water Science, 10(6), 136. https://doi.org/10.1007/s13201-020-01221-3
  • 21. Jedli, H., Briki, C., Chrouda, A., Brahmi, J., Abassi, A., Jbara, A., Slimi, K., Jemni, A. 2019. Experimental and theoretical study of CO 2 adsorption by activated clay using statistical physics modeling. RSC Advances, 9(66), 38454–38463. https://doi.org/10.1039/C9RA05904K
  • 22. Jović-Jovičić, N., Milutinović-Nikolić, A., Gržetić, I., Jovanović, D. 2008. Organobentonite as Efficient Textile Dye Sorbent. Chemical Engineering & Technology, 31(4), 567–574. https://doi.org/10.1002/ceat.200700421
  • 23. Khattab, T.A., Abdelrahman, M.S., Rehan, M. 2020. Textile dyeing industry: environmental impacts and remediation. Environmental Science and Pollution Research, 27(4), 3803–3818. https://doi.org/10.1007/s11356-019-07137-z
  • 24. Kloprogge, J.T. 2017. Raman and Infrared Spectroscopies of Intercalated Kaolinite Groups Minerals. In Developments in Clay Science, Elsevier B.V., 8, 343–410. https://doi.org/10.1016/B978-0-08-100355-8.00011-4
  • 25. Kumar, A., Lingfa, P. 2020. Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742. https://doi.org/10.1016/j.matpr.2019.10.037
  • 26. Liu, H., Liu, Z.-X., Yu, H.-R., Wang, Zhao, F., Wang, J. 2022. A hyper-cross-linked polymer derived from pitch as an efficient adsorbent for VOCs. High Performance Polymers, 34(8), 928–938. https://doi.org/10.1177/09540083221098159
  • 27. Liu, Q., Wang, J., Duan, C., Wang, T., Zhou, Y. 2022. A novel cationic graphene modified cyclodextrin adsorbent with enhanced removal performance of organic micropollutants and high antibacterial activity. Journal of Hazardous Materials, 426, 128074. https://doi.org/10.1016/j.jhazmat.2021.128074
  • 28. Maharana, M., Sen, S. 2021. Magnetic zeolite: A green reusable adsorbent in wastewater treatment. Materials Today: Proceedings, 47, 1490–1495. https://doi.org/10.1016/j.matpr.2021.04.370
  • 29. Mahmoudabadi, T.Z., Talebi, P., Jalili, M. 2019. Removing Disperse red 60 and Reactive blue 19 dyes removal by using Alcea rosea root mucilage as a natural coagulant. AMB Express, 9(1), 113. https://doi.org/10.1186/s13568-019-0839-9
  • 30. Malima, N.M., Owonubi, S.J., Lugwisha, E.H., Mwakaboko, A.S. 2021. Thermodynamic, isothermal and kinetic studies of heavy metals adsorption by chemically modified Tanzanian Malangali kaolin clay. International Journal of Environmental Science and Technology, 18(10), 3153–3168. https://doi.org/10.1007/s13762-020-03078-0
  • 31. Malsawmdawngzela,R., liana,T., Tiwari,D. 2021. Sorption of Rhodamine B Dye onto Bentonite Claysilane Composite Materials. Science & Technology Journal, 9(2), 161–168. https://doi.org/10.22232/stj.2021.09.02.20
  • 32. Mao, H., Huang, Y., Luo, J., Zhang, M. 2021. Molecular simulation of polyether amines intercalation into Na-montmorillonite interlayer as clay-swelling inhibitors. Applied Clay Science, 202, 105991. https://doi.org/10.1016/j.clay.2021.105991
  • 33. Menon, S., Agarwal, H., Shanmugam, V.K. 2021. Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustainable Environment Research, 31(1), 2. https://doi.org/10.1186/s42834-020-00072-6
  • 34. Miyazaki, H., Kitano, Y., Makinose, Y., Handa, M., Nakashima, T. 2019. Synthesis Of Large-swelling Na-Type Bentonite By Hydrothermal Ion Eexchange. Clay Science, 23(3), 47–53. https://doi.org/10.11362/jcssjclayscience.23.3_47
  • 35. Pai, S., Kini, M.S., Selvaraj, R. 2021. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environmental Science and Pollution Research, 28(10), 11835–11849. https://doi.org/10.1007/s11356-019-07319-9
  • 36. Pandey, S., Ramontja, J. 2016. Natural Bentonite Clay and Its Composites for Dye Removal: Current State and Future Potential. American Journal of Chemistry and Applications, 3(2), 8–19. http://www.openscienceonline.com/journal/ajca
  • 37. Pironon, J.., Pelletier, M., de Donato, P., Mosser-Ruck, R. 2003. Characterization of smectite and illite by FTIR spectroscopy of interlayer NH 4 + cations. Clay Minerals, 38(2), 201–211. https://doi.org/10.1180/0009855033820089
  • 38. Pourhakkak, P., Taghizadeh, M., Taghizadeh, A., Ghaedi, M. 2021. Adsorbent, 71–210. https://doi.org/10.1016/B978-0-12-818805-7.00009-6
  • 39. Rápó, E., Aradi, L.E., Szabó, Á., Posta, K., Szép,R., Tonk,S. 2020. Adsorption of Remazol Brilliant Violet-5R Textile Dye from Aqueous Solutions by Using Eggshell Waste Biosorbent. Scientific Reports, 10(1), 8385. https://doi.org/10.1038/s41598-020-65334-0
  • 40. Rehman, S.U., Yaqub, M., Noman, M., Ali, B., Ayaz Khan, M.N., Fahad, M., Muneeb Abid, M., Gul, A. 2019. The Influence of Thermo-Mechanical Activation of Bentonite on the Mechanical and Durability Performance of Concrete. Applied Sciences, 9(24), 5549. https://doi.org/10.3390/app9245549
  • 41. Ribeiro dos Santos, F., de Oliveira Bruno, H.C., Zelayaran Melgar, L. 2019. Use of bentonite calcined clay as an adsorbent: equilibrium and thermodynamic study of Rhodamine B adsorption in aqueous solution. Environmental Science and Pollution Research, 26(28), 28622–28632. https://doi.org/10.1007/s11356-019-04641-0
  • 42. Rochkind, M., Pasternak, S., Paz, Y. 2014. Using Dyes for Evaluating Photocatalytic Properties: A Critical Review. Molecules, 20(1), 88–110. https://doi.org/10.3390/molecules20010088
  • 43. Salah, Gaber, Kandil. 2019. The Removal of Uranium and Thorium from Their Aqueous Solutions by 8-Hydroxyquinoline Immobilized Bentonite. Minerals, 9(10), 626. https://doi.org/10.3390/min9100626
  • 44. Şenol, Z.M., Keskin, Z.S., Özer, A., Şimşek, S. 2022. Application of kaolinite-based composite as an adsorbent for removal of uranyl ions from aqueous solution: kinetics and equilibrium study. Journal of Radioanalytical and Nuclear Chemistry, 331(1), 403–414. https://doi.org/10.1007/s10967-021-08070-7
  • 45. Shaarawy, H.H., Hussein, H.S., Kader, E.A., Hussien, N.H., Hawash, S.I. 2020. Adsorption performance of coated bentonite via graphene oxide. Bulletin of the National Research Centre, 44(1), 53. https://doi.org/10.1186/s42269-020-00299-8
  • 46. Sharma, G., Sharma, S., Kumar, A., Lai, C.W., Naushad, Mu., Shehnaz, Iqbal, J., Stadler, F.J. 2022. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorption Science & Technology, 2022, 1–21. https://doi.org/10.1155/2022/4184809
  • 47. Siregar, P.M.S.B.N., Normah, Juleanti, N., Wijaya, A., Palapa, N.R., Mohadi, R., Lesbani, A. 2021. Mg/Al-CH, Ni/Al-CH, and Zn/Al-CH as Adsorbents for Congo Red Removal in Aqueous Solution. Communications in Science and Technology, 6(2), 74–79.
  • 48. Sudibandriyo, M., Putri, F.A. 2020. The Effect of Various Zeolites as an Adsorbent for Bioethanol Purification using a Fixed Bed Adsorption Column. International Journal of Technology, 11(7), 1300. https://doi.org/10.14716/ijtech.v11i7.4469
  • 49. Taher, T., Mohadi, R., Lesbani, A. 2018. Effect of ti4+/clay ratio on the properties of titanium pillared bentonite and its application for Cr (VI) REMOVAL. Rasayan Journal of Chemistry, 11(3), 1244–1254. https://doi.org/10.31788/RJC.2018.1133065
  • 50. Taher, T., Rohendi, D., Mohadi, R., Lesbani, A. 2019. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26(1), 125–136. https://doi.org/10.1080/25765299.2019.1576274
  • 51. Teğin, İ., Saka, C. 2021. Chemical and thermal activation of clay sample for improvement adsorption capacity of methylene blue. International Journal of Environmental Analytical Chemistry, 1–12. https://doi.org/10.1080/03067319.2021.1928105
  • 52. Tkaczyk, A., Mitrowska, K., Posyniak, A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222
  • 53. Toor, M., Jin, B. 2012. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chemical Engineering Journal, 187, 79–88. https://doi.org/10.1016/j.cej.2012.01.089
  • 54. Varjani, S., Rakholiya, P., Ng, H.Y., You, S., Teixeira, J.A. 2020. Microbial degradation of dyes: An overview. Bioresource Technology, 314, 123728. https://doi.org/10.1016/j.biortech.2020.123728
  • 55. Wang, L., Wang, M., Muhammad, H., Sun, Y., Guo, J., Laipan, M. 2022. Polypyrrole-Bentonite composite as a highly efficient and low cost anionic adsorbent for removing hexavalent molybdenum from wastewater. Journal of Colloid and Interface Science, 615, 797–806. https://doi.org/10.1016/j.jcis.2022.02.002
  • 56. Wei, Q., Mcyotto, F.O., Chow, C.W.K., Nadeem, Z., Li, Z., Liu, J. 2020. Eco-friendly decolorization of cationic dyes by coagulation using natural coagulant Bentonite and biodegradable flocculant Sodium Alginate. SDRP Journal of Earth Sciences & Environmental Studies, 5(2), 51–60. https://doi.org/10.25177/jeses.5.2.ra.10648
  • 57. Yang, L., Luo, X., Yan, L., Zhou, Y., Yu, S., Ju, H., Wang, Y., Zhang, L. 2022. Efficient selective adsorption of uranium using a novel eco-friendly chitosan-grafted adenosine 5′-monophosphate foam. Carbohydrate Polymers, 285, 119157. https://doi.org/10.1016/j.carbpol.2022.119157
  • 58. Yoshida, Y., Shimada, T., Ishida, T., Takagi, S. 2020. Thermodynamic study of the adsorption of acridinium derivatives on the clay surface. RSC Advances, 10(36), 21360–21368. https://doi.org/10.1039/d0ra03158e
  • 59. Zaher, M.S.A., Wahab, S.M.A., Taha, M.H.., Masoud, A.M. 2018. Sorption Characteristics of Iron, Fluoride and Phosphate from Wastewater of Phosphate Fertilizer Plant using Natural Sodium Bentonite. Journal of Membrane Science & Technology, 8(2). https://doi.org/10.4172/2155-9589.1000186
  • 60. Zhong, M., Lao, Z., Tan, J., Yu, G., Liu, Y., Liang, Y. 2022. Synthesis of CoNi-layered double hydroxide on graphene oxide as adsorbent and construction of detection method for taste and odor compounds in smelling water. Journal of Hazardous Materials, 428, 128227. https://doi.org/10.1016/j.jhazmat.2022.128227
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42e259e7-0efb-42e0-838b-b7e2026efb1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.