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Abstract: The article is devoted to the development and study
of a model of a minimal risk portfolio under conditions of hybrid
uncertainty of possibilistic-probabilistic type. In this model, the in-
teraction of fuzzy parameters is described by both the strongest and
the weakest triangular norms. The formula for variance of a portfo-
lio is given that allows for estimating its risk. Models of acceptable
portfolios are based on the principle of expected possibility or on
the basis of fulfilling the restriction on the possibility/necessity and
probability of the level of portfolio return that is acceptable to an
investor. Equivalent deterministic analogues of the models are con-
structed and their solution methods are developed. Theorems de-
scribing a set of investment opportunities are proven. The obtained
results are demonstrated on a model example.
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sibility, necessity, strongest t-norm, weakest t-norm, fuzzy random
variable

1. Introduction

The article presents the architecture of some models for optimization problems
under conditions of hybrid uncertainty of possibilistic-probabilistic type and
some indirect methods for their solving, complementing the results previously
obtained by Yazenin (1991, 1997, 2007), Yazenin and Shefova (2010), Yazenin
and Soldatenko (2018), as well as Egorova and Yazenin (2018).

In a number of relevant papers, devoted to the problem of portfolio selec-
tion, only the situation, when the interaction of fuzzy factors is described by
the strongest triangular norm (t-norm) has been studied (see, for example, Xu
and Zhou, 2011). In our work, attention is paid to the study of situations, when
the interaction of fuzzy model factors is described by both the strongest and
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the weakest t-norms, which allows us to assess the range of risk changes and the
behavior of a set of acceptable portfolios, that is, to manage more adequately
the uncertainty when making investment decisions. In order to remove prob-
abilistic uncertainty from the acceptable portfolio model, the principle based
on the expected possibility is used. Uncertainty of possibilistic (fuzzy) type is
removed by imposing requirements for the possibility/necessity of fulfilling re-
strictions on the acceptable level of expected profitability of the portfolio. The
relationship between the models of acceptable portfolios of different architec-
tures is established and investigated. Theoretical results and conclusions are
confirmed by numerical calculations.

2. The necessary concepts and notations

In the context of works by Nahmias (1979), Yazenin (2016), Feng, Hu and Shu
(2001), Dubois and Prade (1988), Nguyen and Walker (1997), Mesiar (1997) and
Hong (2001), we introduce a number of definitions and concepts from the theory
of possibilities. Let further (Γ, P(Γ), τ) and (Ω, B, P) be the possibility and
probability spaces, respectively, in which Ω is the space of elementary events ω
∈ Ω, Γ is the model space with elements γ ∈ Γ, B is the σ-algebra of events, P(Γ)
is the set of all subsets of Γ, τ ∈ {π, ν}, π and ν are measures of possibility and
necessity, respectively, and P is the probability measure; En is n-dimensional
Euclidean space, En

+ = {x ∈ En : x ≥ ∅}.

We define a fuzzy random variable and its distribution as follows (see Yazenin
and Wagenknecht, 1996, Yazenin, 2016).

Definition 1 Fuzzy random variable Y (ω,γ) is a real function Y :Ω×Γ→E1

σ-measurable for each fixed γ, and

µY (ω,t)=π {γ∈Γ:Y (ω,γ)=t} , ∀t∈E1

is called its distribution function.

From Definition 1 it follows that the distribution function of a fuzzy random
variable depends on a random parameter, i.e. it is a random function.

Definition 2 Let Y(ω, γ) be a fuzzy random variable. Its expected value E[Y]
is a fuzzy value that has a possibility distribution function

µE[Y ] (t)=π {γ∈Γ: E[Y (ω,γ) ] =t} , ∀t∈E1

where E is the mathematical expectation operator

E [Y (ω,γ)]=

∫

Ω

Y (ω,γ)P (dω) .

The distribution function of the expected value of a fuzzy random variable is
no longer dependent on the random parameter and therefore is fuzzy.
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We define, following Feng, Hu and Shu (2001), the second-order moments.
Let X and Y be fuzzy random variables.

Definition 3 The covariance of fuzzy random variables X and Y is defined as
follows:

cov (X,Y )=
1

2

∫ 1

0

(

cov
(

X−
ω (α) ,Y −

ω (α)
)

+ cov
(

X+
ω (α) ,Y +

ω (α)
))

dα,

where X−
ω (α) , Y −

ω (α),X+
ω (α) , Y +

ω (α) are the boundaries of α-level sets of fuzzy
variables Xω, Yω, respectively.

Definition 4 The variance of a fuzzy random variable Y is

D [Y ] =cov (Y ,Y ) . (1)

The mathematical expectation, variance, and covariance of fuzzy random vari-
ables, determined in accordance with the considered approach, inherit the main
properties of similar characteristics of the real random variables.

An LR-type distribution is often used for modeling fuzzy variables (see, for
example, Dubois and Prade, 1988). This distribution, for a fuzzy variable Y (γ)
is usually written as µY (t) =

[

m,m, d, d
]

LR
. Further on we will simply write

Y (γ) =
[

m,m, d, d
]

LR
. Here m,m are left and right boundaries of the tolerance

interval, d, d are the coefficients of fuzziness, while m ≤ m and d > 0, d > 0,
L(t) and R (t) are left and right shape functions for the possibility distribution.

We will use triangular norms (t-norms) to aggregate fuzzy information.
These norms generalize the ”min” operation, inherent in operations on fuzzy
sets and fuzzy variables (see Nguyen and Walker, 1997). The following t-norms
are of particular interest:

TM (x,y)=min {x, y} and TW (x,y)=

{

min {x,y} , if max {x,y}= 1,
0, otherwise,

TM is called the strongest, and TW is called the weakest t-norm, since for any
arbitrary t-norm T and ∀x, y ∈ [0, 1], the following inequality holds (see, for
example, Nguyen and Walker, 1997):

TW (x,y)≤T (x,y)≤TM (x,y) .
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3. Mathematical models of a minimal risk portfolio under

hybrid uncertainty

3.1. Portfolio return under hybrid uncertainty of possibilistic

-probabilistic type

Under conditions of hybrid uncertainty of possibilistic-probabilistic type, the
return on an investment portfolio can be represented by a fuzzy random function

Rp (w, ω,γ)=

n
∑

i=1

Ri (ω,γ)wi, (2)

which is a linear function of equity shares w = (w1, . . . , wn) in the portfolio.
Here Ri (ω, γ) are fuzzy random variables that model the returns of individual
financial assets with the help of shift-scale representation (see Yazenin, 2016):

Ri (ω,γ)=ai (ω)+σi (ω)Zi (γ) . (3)

Further, we assume that fuzzy variables Zi(γ) =
[

mi,mi, di, di
]

LR
in repre-

sentation (3) are mutually T -related, where T ∈ {TM , TW }, and ai (ω) , σi(ω)
are shift and scale coefficients – random variables defined on a probability space
(Ω, B, P), with E[σi (ω)] ≥ 0. Then, the possibility distribution of the portfolio
return (2) takes on the following form

RT
p (w, ω, γ) =

[

mRp
(w, ω) ,mRp

(w, ω) , dRT
p
(w, ω) , dRT

p
(w, ω)

]

LR
, (4)

where

mRp
(w, ω) =

∑n

i=1
(ai (ω) + σi (ω)mi)wi,

mRp
(w, ω) =

∑n

i=1
(ai (ω) + σi (ω)mi)wi

and the coefficients of fuzziness take on the form depending on the type of T :

dRM
p
(w,ω)=

∑n

i=1
σi (ω) diwi, dRM

p
(w,ω)=

∑n

i=1
σi (ω)diwi

when T = TM , and

dRW
p
(w,ω) = max

i=1,...,n
{σi (ω) diwi} , dRW

p
(w,ω) = max

i=1,...,n

{

σi (ω) diwi

}

in case of T = TW . Further, we will denote RT
p (w, ω, γ) as RM

p (w, ω, γ) when

T = TM and RW
p (w, ω, γ) when T = TW .

To remove the uncertainty of probabilistic type in accordance with the ap-
proach of Yazenin (2007) it is necessary to identify the possibility distribution of
the mathematical expectation of the function RT

p (w, ω, γ), that is, to calculate
its parameters. The expected return in portfolio models is a fuzzy value for a
fixed w. This follows from the results of the theorems, provided below (see, for
example, Yazenin, 2016; Yazenin and Soldatenko, 2018).
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Theorem 1 Let T=TM . Then, the expected portfolio return R̂M
p (w,γ) is char-

acterized by the possibility distribution function

R̂M
p (w,γ)= E

[

RM
p (w,ω,γ)

]

=
[

m
R̂p

(w) ,m
R̂p

(w) ,d
R̂M

p
(w) ,d

R̂M
p
(w)
]

LR

where

m
R̂p

(w)=
∑n

i=1
(âi+σ̂imi)wi, m

R̂p
(w) =

∑n

i=1
(âi+σ̂imi)wi

d
R̂M

p
(w) =

∑n

i=1
σ̂idiwi, d

R̂M
p
(w) =

∑n

i=1
σ̂idiwi, âi= E [ai(ω)] , σ̂i= E [σi(ω).]

Theorem 2 Let T=TW . Then, the expected portfolio return R̂W
p (w,γ) is char-

acterized by the possibility distribution function

R̂W
p (w,γ)= E

[

RW
p (w,ω,γ)

]

=
[

m
R̂p

(w) ,m
R̂p

(w) , d
R̂W

p
(w) , d

R̂W
p
(w)
]

LR

where

d
R̂W

p
(w) = E

[

max
{i=1,...,n}

{σi (ω) diwi}

]

, d
R̂W

p
(w) = E

[

max
{i=1,...,n}

{σi (ω) diwi}

]

.

Remark 1 The functions d
R̂W

p
(w) and d

R̂W
p
(w) can be calculated explicitly

only for simple probabilities distributions of random components ai (ω) and
σi(ω). This is due to a large amount of calculations. In order to reduce the
amount of calculations, we can use stochastic optimization methods, in particu-
lar the stochastic quasi-gradient method (see, for example, Ermolyev, 1976, and
Egorova and Yazenin, 2017).

3.2. Models of acceptable portfolios under hybrid uncertainty of

possibilistic-probabilistic type

In accordance with the classical Markowitz (1952) approach, we need to con-
struct a portfolio risk function in the minimal risk portfolio model. The expected
return or portfolio return can be entered into a system of restrictions. Since the
expected return on a portfolio in the case of fuzzy random data is a fuzzy value,
then, in order to remove the uncertainty of possibilistic type in a system of
restrictions that defines the set of acceptable portfolios, one can introduce a
restriction on possibility/necessity of the level of expected return acceptable to
an investor. Then, the generalized Markowitz model of acceptable portfolios
can be represented as

F τE
p (w) =











τ
{

R̂T
p (w,γ) R md

}

≥α,
∑n

i=1 wi= 1,
w ∈En

+,
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where R̂T
p (w, γ) is the expected return, R – crisp relation {≥, =}; α ∈ (0, 1],

md – level of profitability, acceptable to an investor, T ∈ {TM , TW }.

The following theorems allow us to construct the equivalent determinis-
tic analogues of acceptable portfolio models (see, for example, Yazenin, 2016;
Yazenin and Soldatenko, 2018).

Theorem 3 Let in the model constraint F τE
p τ=′π′, R = ’≥’. Then, the equiv-

alent deterministic model of acceptable portfolios has the form:

FπE
p (w) =







∑n

i=1 (âi+σ̂imi)wi+d
R̂T

p
(w) ∗R−1 (α)≥md,

∑n

i=1 wi= 1,
w ∈En

+.

Theorem 4 Let in the model of acceptable portfolios F τE
p τ = ‘ν’, R = ’≥’.

Then, the equivalent deterministic model of acceptable portfolios takes the form:

F νE
p (w) =







∑n

i=1 (âi+σ̂imi)wi−d
R̂T

p
(w) ∗L−1 (1−α)≥md,

∑n

i=1 wi= 1,
w ∈En

+.

From Theorems 3 and 4 we get

Corollary 1 F νE
p (w) ⊆ FπE

p (w).

Proof Since mi≥mi and w ∈ En
+, then

∑n

i=1
(âi+σ̂imi)wi≥

∑n

i=1
(âi+σ̂imi)wi.

Based on the assumptions made earlier, [σi (ω)] ≥ 0, i= 1, . . . ,n, therefore
d
R̂T

p
(w), d

R̂T
p
(w)≥ 0. Considering that R−1 (α), L−1 (1−α)> 0, we obtain

∑n

i=1
(âi+σ̂imi)wi+d

R̂T
p
(w) ∗R−1 (α)≥

∑n

i=1
(âi+σ̂imi)wi−d

R̂T
p
(w) ∗L−1 (1−α)

for both the strongest and the weakest t-norms. Therefore, we get the statement
of the corollary. ✷

In the case when the portfolio return (2) is included in the system of re-
strictions, the hybrid uncertainty can be removed by imposing a limit on the
possibility/necessity and probability of an acceptable level of return. Formally,
the mathematical model of such a constraint can be written as:

F τP
p (w) =







τ {P {Rp (w,ω,γ) Rmd}≥p0}≥α0,
∑n

i=1 wi= 1,
w ∈En

+,
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where P is the probability measure, and p0 ∈ (0, 1] is the probability level.

For further analysis we will need the following notations and concepts. We
denote by t = (t1, . . . , tn) – a vector whose components are possible values of
fuzzy variables Z1 (γ) , . . . , Zn(γ), respectively. For the strongest t-norm with
the possibility of µZi

(ti), the return of the i-th financial asset is a random
variable

Zti
i (w) =ai (ω)+σi (ω) ti,

and

Rt
p (w,ω)=

n
∑

i=1

(ai (ω)+σi (ω) ti)wi

is the return on the portfolio with the possibility of µp (t) = min1≤i≤n {µZi
(ti)}.

Then, following Yazenin (2016), with the possibility of µp(t), the expected
return and risk of the portfolio are determined by the formulas

mRp
(w, t)= E

[

Rt
p(w,ω)

]

=
∑n

i=1
(âi+σ̂iti)wi

and

dRp
(w, t) = E

[

(

Rt
p (w, ω)−mRp

(w, t)
)2
]

respectively.

Using standard transformations we obtain the following formula for the vari-
ance with the possibility of µp(t) (see, for example, Yazenin, 2016):

dRp
(w, t)=

n
∑

i=1

n
∑

j=1

cij(ti,tj)wiwj

in which

cij(ti, tj) = Caiaj
+Cajσi

tj+Cσjai
ti+Cσiσj

titj ,

Caiaj
=cov (ai, aj) , Cajσi

=cov (aj , σi) , Cσjai
=cov (σj , ai) , Cσiσj

=cov (σi, σj) .

Function dRp
(w, t) has the properties that are due to the properties of the

covariance matrix C with elements cij(ti, tj):

• dRp
(w, t) is a convex function on w for a fixed t;

• for any vectors w and t the function dRp
(w, t) is nonnegative;

• dRp
(w, t) is a convex function on t for a fixed w.

The function dRp
(w, t) can be written with the help of matrix C as

dRp
(w, t) =(C w, w).

We proceed to the construction of an equivalent deterministic analogue of
the model F τP

p (w). We prove the following Lemma, based on the technique
developed by Yazenin and Shefova (2010) and Yazenin and Soldatenko (2019).
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Lemma 1 Let in the constraint model F τP
p (w) random parameters be normally

distributed: ai (ω)∈Np

(

âi,d̂ai

)

, σi (ω)∈Np

(

σ̂i,d̂σi

)

, i= 1, . . . ,n; fuzzy param-

eters Z1 (γ) , . . . , ZN(γ) be TM -related, µp (t)≥α0. Then, with the possibility of
µp (t), the system of restrictions F τP

p (w) is equivalent to the system

FµP
p (w) =







mRp
(w,t) +β0

√

dRp
(w,t)≥md,

∑n

i=1 wi= 1,
w ∈En

+,

where β0 – is a solution to the equation F1
0 (x) = 1−p0, and F1

0 (x) – is a function
of the standard normal probability distribution.

Proof It is clear that with the possibility of µp(t)

Rp (w, ω, t) ∼ Np(mRp
(w, t) , dRp

(w, t)),

Np is a class of normal probabilities distributions. Then, with the possibility of
µp(t) we have:

P
{

Rt
p (w,ω)≥md

}

= P

{

Rt
p (w,ω)−mRp

(w,t)
√

dRp
(w,t)

≥
md−mRp

(w,t)
√

dRp
(w,t)

}

=

= 1−F 1
0

(

md−mRp
(w,t)

√

dRp
(w,t)

)

≥p0→
md−mRp

(w,t)
√

dRp
(w,t)

≤β0.

Hence, as a result, we get the inequality indicated in the statement of the
theorem:

mRp
(w,t)+β0

√

dRp
(w,t)≥md. ✷

Remark 2 With p0 > 0.5, the solution of equation F 1
0 (x) = 1 − p0 is a neg-

ative number β0 < 0. Therefore, in this case, the set of acceptable portfolios,
defined by the system FµP

p (w), will be convex, since the function mRp
(w, t) +

β0

√

dRp
(w, t) is concave.

Remark 3 With p0 = 0.5, the solution of equation is β0 = 0. Hence, the system
FµP
p (w) takes on the form

FµP
p (w) =







∑n

i=1 (âi+σ̂iti)wi≥md,
∑n

i=1 wi= 1,
w ∈En

+.

The Lemma proven above allows us to prove a theorem with the help of which
an equivalent deterministic analogue of the system F τP

p (w) can be constructed.
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Theorem 5 Let in the constraint model F τP
p (w) random parameters be nor-

mally distributed: ai (ω)∈Np

(

âi,d̂ai

)

, σi (ω)∈Np

(

σ̂i,d̂σi

)

, i = 1, . . . , n; fuzzy

parameters Z1 (γ) , . . . , ZN (γ) be TM -related, τ=′π′. Then, the system of restric-
tions F τP

p (w) is equivalent to the system

FπP
p (w) =







mRp
(w,t+)+β0

√

dRp
(w,t+)≥md,

∑n

i=1 wi= 1,
w ∈En

+,

where

mRp

(

w,t+
)

=
∑n

i=1

(

âi+σ̂it
+
i

)

wi,

dRp

(

w,t+
)

=
∑n

i=1

∑n

j=1
cij(t

+
i ,t

+
j )wiwj ,

and t+i , t
+
j are right borders of α0-level sets of fuzzy variables Zi (γ) , Zj(γ),

respectively.

Proof We introduce the following notation in order to simplify the formulas

G (w,t1, . . . ,tn)=mRp
(w,t)+β0

√

dRp
(w,t).

Then the system of restrictions FµP
p (w) can be rewritten in the form

FµP
p (w) =







G (w,t1, . . . ,tn)≥md,
∑n

i=1 wi= 1,
w ∈En

+,

and the system of restrictions FπP
p (w), based on Lemma 1, in the form

FπP
p (w) =







π {γ ∈ Γ : G (w,Z1 (γ) , . . . ,Zn (γ))≥md}≥α0,
∑n

i=1 wi= 1,
w ∈En

+.

Let us reduce the restriction on possibility from the system FπP
p (w) to the

equivalent deterministic one. We have (based on the properties of the measure
of possibility and the definition of the distribution function, see Yazenin, 2016):

π {γ ∈ Γ : G (w,Z1 (γ) , . . . ,Zn (γ))≥md}=

= π







⋃

y≥md

(γ ∈ Γ : G (w,Z1 (γ) , . . . , Zn (γ)) = y)







=

= sup
y≥md

π {γ ∈ Γ : G (w,Z1 (γ) , . . . ,Zn (γ))=y}=
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= sup
y≥md

π



























⋃

(u1, . . . , un) :
G (w,u1, . . . ,un)=y

(γ ∈ Γ : Z1 (γ)=u1, . . . ,Zn (γ)=un)



























=

= sup
y≥md

sup
(u1, . . . , un) :

G (w,u1, . . . ,un)=y

= yπ {γ∈ Γ :Z1 (γ)=u1, . . . ,Zn (γ)=un}

= sup
y≥md

sup
(u1, . . . , un) :

G (w,u1, . . . ,un)=y

= yµZ1
, . . . , Zn (u1, . . . , un) =

= sup
y≥md

sup
(u1, . . . , un) :

G (w,u1, . . . ,un)=y

min
1≤i≤n

= y {µZi
(ui)}≥α0.

From min1≥i≥n {µZi
(ui)}≥α0 it follows that µZi

(ui)≥α0, i= 1, . . . ,n. Since
the function G (w, t1, . . . ,tn) is continuous on the parameters u1, . . . ,un, and α0-
levels of fuzzy variables Z1 (γ) , . . . ,Zn (γ) are bounded segments of the number
line (i.e., compact), then the corresponding supremums are reached. Therefore,
the equivalent deterministic constraint takes the form:

G
(

w,t+1 , . . . ,t
+
n

)

≥md

or, by virtue of the accepted notations:

mRp

(

w, t+
)

+ β0

√

dRp
(w, t+)≥md. ✷

Remark 4 With p0 = 0.5 and τ =′ π′ the system of restrictions FπP
p (w) takes

on the form:

FπP
p (w) =







∑n

i=1 (âi+σ̂iti)wi≥md,
∑n

i=1 wi= 1,
w ∈En

+.

The following theorem establishes a connection between the constraint mod-
els F τE

p (w) and F τP
p (w).

Theorem 6 Let in the constraint models F τE
p (w) and F τP

p (w) random pa-

rameters be normally distributed: ai (ω)∈Np

(

âi,d̂ai

)

, σi (ω)∈Np

(

σ̂i,d̂σi

)

, i =

1, . . . , n, fuzzy parameters Z1 (γ) , . . . , ZN (γ) be TM -related, τ=′π′. Then, if in
the model F τP

p (w) the probability level p0= 0.5, then FπE
p (w) =FπP

p (w).
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Proof Given that t+i =mi+diR
−1(α), we get the following:

∑n

i=1

(

âi+σ̂it
+
i

)

wi=
∑n

i=1

(

âi+σ̂i(mi+diR
−1(α))

)

wi=

=
∑n

i=1
(âi+σ̂imi)wi+

∑n

i=1
σ̂idiR

−1(α)wi=

=
∑n

i=1
(âi+σ̂imi)wi+d

R̂T
p
(w)R−1 (α) .

That is what we needed to prove. ✷

Remark 5 Theorem 6 determines the conditions, under which the second-order
moments in the FπP

p (w) model do not affect the formation of the set of acceptable
portfolios, which leads to the coincidence of the sets of acceptable portfolios,
defined by the FπE

p (w) and FπP
p (w) models.

3.3. Assessment of portfolio risk with hybrid uncertainty

In accordance with the indicated approach to determining the second-order
moments, we can determine the variance of the portfolio to assess its risk. We
need to obtain the formulas (variances) for the case of both the strongest and
the weakest t-norms.

With T = TM formula (1) takes the form

DM
p (w) =

1

2

∫ 1

0

(

D
[

RM−
p (w,ω,α)

]

+D
[

RM+
p (w,ω,α)

])

dα,

where RM−
p (w, ω, α) and RM+

p (w, ω, α) are the left and right boundaries of

α-level set of fuzzy random variable RM
p (w, ω, α):

RM−
p (w,ω,α) =

∑n

i=1
(ai(ω)+σi(ω)mi)wi−

∑n

i=1
σi (ω)diwi∗L

−1 (α).

RM+
p (w,ω,α)=

∑n

i=1
(ai(ω)+σi(ω)mi)wi+

∑n

i=1
σi (ω)diwi∗R

−1 (α).

If all random parameters of distributions are independent, then after stan-
dard transformations we get the formula for the variance:

DM
p (w) =

n
∑

i=1

(

D [ai (ω)] +
1

2
D [σi (ω)]

(

m2
i+m2

i+2midi

∫ 1

0

R−1 (α) dα−2midi

∫ 1

0

L−1 (α) dα+d
2

i

∫ 1

0

(

R−1 (α)
)2

dα+d2i

∫ 1

0

(

L−1 (α)
)2

dα

))

w2
i .

Note that if in fuzzy random variables the fuzzy components are given by
LR-type fuzzy numbers with the same left and right shapes and coefficients of
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fuzziness, i.e. L (α) = R (α) = S(α), ∀α and mi = mi = mi, di = di = di, i =
1, . . . , n, then the variance formula can be simplified:

DM
p (w) =

n
∑

i=1

(

D [ai (ω)] +D [σi (ω)]

(

m2
i+d2i

∫ 1

0

(

S−1 (α)
)2

dα

))

w2
i .

Example 1 In case when shift and scale coefficients ai (ω) , σi (ω) are uniformly
distributed over the segment [0,1] and independent, and the shape function
S (t) = max {0, 1− t}, t ≥ 0, we obtain the following formula for the variance:

DM
p (w) =

1

12

n
∑

i=1

(

m2
i+

1

3
d2i+1

)

w2
i .

We now define the variance for the t-norm TW . To do this, we will again
use formula (1) to find the covariance of two fuzzy random variables. For the
weakest t-norm, the formula for finding the variance takes the form:

DW
p (w) =

1

2

∫ 1

0

(

D
[

RW−
p (w,ω,α)

]

+D
[

RW+
p (w,ω,α)

])

dα,

where RW−
p (w, ω, α) and RW+

p (w, ω, α) are respectively left and right boun-

daries of α-level set of portfolio return – fuzzy random variable RW
p (w, ω, γ):

RW−
p (w,ω,α) =

∑n

i=1
(ai(ω)+σi(ω)mi)wi − max

i=1,...,n
{σi (ω) diwi} ∗L

−1 (α)

RW+
p (w,ω,α) =

∑n

i=1
(ai(ω)+σi(ω)mi)wi+ max

i=1,...,n

{

σi (ω) d̄iwi

}

∗R−1 (α) .

After appropriate transformations, the final formula for variance, which allows
us to determine the risk of the portfolio, has the form:

DW
p (w) =

1

2

n
∑

i=1

w2
i (D [ai (ω)+σi (ω)mi] +D [ai (ω)+σi (ω)mi])+

+
1

2
D

[

max
i=1,...,n

{

σj (ω) djwj

}

]
∫ 1

0

(

R−1 (α)
)2

dα+

+
1

2
D

[

max
i=1,...,n

{

σj (ω) djwj

}

]
∫ 1

0

(

L−1 (α)
)2

dα

+
∑

1≤i<j≤n

wiwj

(

cov
(

(ai (ω)+σi (ω)mi) ,
(

aj (ω)+σj (ω)mj

))

+

cov ((ai (ω)+σi (ω)mi) , (aj (ω)+σj (ω)mj)))+

∑n

i=1
wi

(
∫ 1

0

R−1 (α) dαcov

(

(ai(ω)+σi(ω)mi) , max
i=1,...,n

{

σj (ω) djwj

}

)

−

∫ 1

0

L−1 (α) dαcov

(

(ai (ω)+σi (ω)mi) , max
i=1,...,n

{

σj (ω) djwj

}

))

.
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If all random parameters of distributions are independent, then:

DW
p (w) =

1

2

n
∑

i=1

w2
i

(

2D [ai(ω)] +D [σi(ω)]
(

m2
i+m2

i

))

+

+
1

2
D

[

max
i=1,...,n

{

σj (ω) djwj

}

]
∫ 1

0

(

R−1 (α)
)2

dα+

+
1

2
D

[

max
i=1,...,n

{

σj (ω) djwj

}

]
∫ 1

0

(

L−1 (α)
)2

dα+

+
∑n

i=1
wi

(
∫ 1

0

R−1 (α) dαcov

(

(ai(ω) + σi(ω)mi) , max
i=1,...,n

{

σj (ω) djwj

}

)

−

∫ 1

0

L−1 (α) dαcov

(

(ai (ω)+σi (ω)mi) , max
i=1,...,n

{

σj (ω) djwj

}

))

We note that if in all distributions the fuzzy component is given by LR-type
fuzzy numbers with the same left and right shape functions and coefficients
of fuzziness, then the terms with covariance are mutually eliminated and the
variance formula can be simplified:

DW
p (w) =

n
∑

i=1

w2
i

(

D [ai(ω)] + +D [σi(ω)]m
2
i

)

+

+D

[

max
i=1,...,n

{σj (ω) djwj}

]
∫ 1

0

(

S−1 (α)
)2

dα. (5)

Example 2 Let the shift and scale coefficients ai (ω) , σi (ω) be uniformly dis-
tributed over the segment [0,1] and independent. Then we get the following
formula for the variance:

DW
p (w)=

1

2

n
∑

i=1

w2
i

(

1

12

(

m2
i+m2

i

)

+
1

6

)

+
1

2

(

EMax2
(

dw
)

−
(

EMax
(

dw
))2
)

∫ 1

0

(

R−1 (α)
)2

dα+

1

2

(

EMax2 (dw)− (EMax (dw))
2
)

∫ 1

0

(

L−1 (α)
)2

dα+

+
∑n

i=1
wi

(
∫ 1

0

R−1 (α) dαmi

(

E

[

σi (ω) max
j=1,...,n

{

σj (ω) djwj

}

]

−
1

2
EMax

(

dw
)

)

−

−

∫ 1

0

L−1 (α) dαmi

(

E

[

σi (ω) max
j=1,...,n

{

σj (ω)djwj

}

]

−
1

2
EMax (dw)

))

and the formula (5) under the corresponding assumptions and for S (t) =
max{0, 1− t}, t ≥ 0 takes on the form:

DW
p (w) =

1

12

n
∑

i=1

w2
i

(

m2
i+1

)

+
1

3

(

EMax2 (dw)− (EMax (dw))
2
)
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where

EMax (dw) := E

[

max
j=1,...,n

{σi (ω) diwi}

]

=

n
∑

i=1

(dw)
n−i+1
(i)

(n−i+1) (n−i+2) (dw)(i+1) · · · (dw)(n)
,

EMax2 (dw) := E

[

max
j=1,...,n

({σi (ω)diwi})
2

]

=

n
∑

i=1

2 (dw)n−i+2
(i)

(n−i+2) (n−i+3) (dw)(i+1) · · · (dw)(n)

and (dw)(1) ,..., (dw)(n) is an ascending permutation of elements {d1w1,..., dnwn}.

3.4. Minimum risk portfolio models

Based on the results presented in Sections 3.1, 3.2, and 3.3, the minimum risk
portfolio models can be written down as:

DT
p (w)→min, (6)

w ∈Fp (w) (7)

where Fp (w) ∈
{

FπE
p , F νE

p , FπP
p , F νP

p

}

. Further, we assume that the minimum
risk portfolio models use the same t-norm in the criteria and constraints. Let
us now move on to their illustrative investigations.

4. Minimal risk portfolio under hybrid uncertainty and

numerical calculations

We consider an example of two-dimensional portfolio (n = 2).

Let Z1 = [2.2, 2.2, 0.3, 0.3]LR, Z2 = [1.2, 1.2, 0.4, 0.4]LR, L (t) = R (t) =
max{0, 1− t}, t ≥ 0, α = 0.75.

Recall that all ai (ω)σi (ω) are independent random variables with a uniform
distribution on the segment [0,1]. We first specify the minimum risk portfolio
models for the weakest t-norm. Under the assumptions made, the equivalent
deterministic analogue of the minimum risk portfolio (6)-(7) in the context of
the possibility measure takes the form:

73

150
w2

1+
61

300
w2

2+
1

3

(

EMax2 (dw)− (EMax (dw))
2
)

→min

FπE
p (w) =







1.6w1+1.1w2+0.25∗EMax (dw)≥md,

w1+w2= 1,
w1,w2≥ 0,
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and in the context of the necessity measure:

73

150
w2

1+
61

300
w2

2+
1

3

(

EMax2 (dw)− (EMax (dw))
2
)

→min,

F νE
p (w) =







1.6w1+1.1w2−0.75∗EMax (dw)≥md,

w1+w2= 1,
w1,w2≥ 0.

It is not possible to write out the formulas for EMax2 (dw) and EMax (dw)
numerically, since they depend on the specific values of w1 and w2.

Let us now consider the same problem for the strongest t-norm. Under the
assumptions made, the equivalent deterministic analogue of the minimum risk
portfolio (6)-(7) in the context of the possibility measure takes the form:

587

1200
w2

1+
187

900
w2

2→min ,

FπE
p (w) =







1.6375w1+1.15w2≥md,

w1+w2= 1,
w1,w2≥ 0,

and in the context of the necessity measure:

587

1200
w2

1+
187

900
w2

2→min,

F νE
p (w) =







1.4875w1+0.95w2≥md,

w1+w2= 1,
w1,w2≥ 0.

Figure 1 shows a set of quasi-efficient (i.e., efficient with a given possibil-
ity) portfolio estimates in accordance with respective models and initial data
presented above.

The first thing to note in Fig. 1 is the behavior of quasi-efficient portfolio es-
timates in different contexts. In the context of possibility we have an optimistic
decision making model, while in the context of necessity, we have a pessimistic
one, which, for a given level of expected return, gives a significantly higher risk.

Secondly, as one can see in the context of possibility measure, the weakest
t-norm, which has the property of reducing the uncertainty (see, for example
Yazenin, 2016), narrows the scope of feasible solutions and makes the model
more ”strict” or ”cautious”, i.e. the risk at a fixed rate of return is increased
slightly. In the context of necessity, the model behaves in the ”opposite” way.
Thus, we can say that the weakest t-norm reduces the ”level of optimism” in the
optimistic model and reduces the level of ”pessimism” in the pessimistic model.

Let us now consider the effect of the random component in the above mod-
els on the portfolio risk in the case of the strongest t-norm in the context of
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1.1 1.2 1.3 1.4 1.5 1.6
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D
p

= ,

T= TM
= ,
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= ,

T= TW

= ,

T= TW

Figure 1. Sets of quasi-efficient portfolios depending on the measure of possi-
bility/necessity and the t-norm

the possibility measure. We analyze how the solution of the problem behaves
for different values of the parameters of the scaling coefficients σi of uniform
distribution. Let all of them have a mathematical expectation equal to 0.5, and
the lengths of the segments be assumed equal to 1, 0.75, 0.5, 0.25, and 0.01,
respectively, that is, we will gradually reduce the spread (variance) of a ran-
dom variable from a certain maximum level to an ”almost non-random” value,
with all potential values being concentrated in a very small neighborhood of 0.5.
Figure 2 shows the results of numerical experiments.

The results of the experiment, shown in Fig. 2, are consistent with our
expectations: lower uncertainty of the probabilistic type in the problem condi-
tioning leads to more guaranteed result and, accordingly, to lower risk levels at
the same level of return.

5. Summary

In this paper, a comprehensive study of the architecture of mathematical models
of the minimal risk portfolio has been carried out. For extremal t-norms (the
weakest and the strongest) in the context of possibility/necessity, the properties
of models of acceptable portfolios are studied depending on the decision-making
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md
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0.3

0.4
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D
p

1

0.75

0.5

0.25

0.01

Figure 2. Influence of the random parameter σi (scaling) on the set of quasi-
efficient portfolios in the case of the strongest t-norm in the context of the
measure of possibility

principles used in conditions of hybrid uncertainty of possibilistic-probabilistic
type.

Based on the approach of Feng, Hu and Shu (2001), formulas for assessing
portfolio risk are specified in the contexts of the strongest and weakest t-norms.
The obtained theoretical results and conclusions are consistent with illustrative
numerical calculations.

In terms of further research, we intend to generalize the results of the article
to the case when the acceptable level of portfolio return for an investor is a fuzzy
value associated with the portfolio return by a fuzzy relation (see Gordeev and
Yazenin, 2006). This will allow for a more ”soft” and adequate modeling of
preferences of an investor.
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