PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A sitting or standing position – which one exerts more loads on the musculoskeletal system of the lumbar spine? Comparative tests based on the methods of mathematical modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The work aimed to assess the functioning of the musculoskeletal system within the lumbar spine in relation to everyday postures of sitting and standing. Methods: The comparative analysis was based both on experimental tests and computer simulations performed in the AnyBody Modeling System environment. Input data used to prepare models were based on the information obtained in experimental tests. The test participants were tasked with adopting two postures: 1) standing position and 2) sitting position. Kinematics measurements were performed using the Zebris ultrasonic system. During sitting position, the tests additionally involved the use of a dynamometric platform measuring reaction forces occurring between buttocks and the seat. Results: The comparative analysis included measurements of the trunk inclination angle and the pelvic inclination angle as well as results of computer simulations. The sitting posture is responsible for increased trunk inclination and a change in the position of the pelvis. In terms of the sitting position, it was possible to observe an increase in the loads affecting individual intervertebral joints of the lumbar spine by 155–184% in comparison with the standing posture (100%). Simulations revealed an increased muscle activity of the erector spinae, abdominal internal oblique muscles and abdominal external oblique muscles. Conclusions: Adopting a sitting position increases the loads on the lumbar spine and increases the activity of the erector spinae and abdominal muscles compared to the standing position, which is caused by change in the position of the pelvis and the curvature of the lumbar region.
Rocznik
Strony
113--120
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
Bibliografia
  • [1] BUCKLAND A.J., BURAPACHAISRI A., STEKAS N., VASQUEZ--MONTES D., PROTOPSALTIS T., VIGDORCHIK J., Obesity Alters Spinopelvic Alignment Changes From Standing to Relaxed Sitting: the Influence of the Soft-tissue Envelope, Arthroplast. Today, 2020, 6, 590–595.e1.
  • [2] DE CARVALHO D.E., SOAVE D., ROSS K., CALLAGHAN J.P., Lumbar Spine and Pelvic Posture Between Standing and Sitting: A Radiologic Investigation Including Reliability and Repeatability of the Lumbar Lordosis Measure, J. Manipulative Physiol. Ther., 2010, 33, 48–55.
  • [3] CHOLEWICKI J., MCGILL S.M., Lumbar posterior ligament involvement during extremely heavy lifts estimated from fluoroscopic measurements, J. Biomech., 1992, 25, 17–28
  • [4] CLAEYS K., BRUMAGNE S., DEKLERCK J., VANDERHAEGHEN J., DANKAERTS W., Sagittal evaluation of usual standing and sitting spinal posture, J. Bodyw. Mov. Ther., 2016, 20, 326–333.
  • [5] CLAUS A., HIDES J., MOSELEY G.L., HODGES P., Sitting versus standing: Does the intradiscal pressure cause disc degeneration or low back pain?, J. Electromyogr. Kinesiol., 2008, 18, 550–558.
  • [6] CLAUS A.P., HIDES J.A., MOSELEY G.L., HODGES P.W., Different ways to balance the spine: Subtle changes in sagittal spinal curves affect regional muscle activity, Spine (Phila. Pa. 1976), 2009, 34, E208–E214.
  • [7] DAMSGAARD M., RASMUSSEN J., CHRISTENSEN S.T., SURMA E., DE ZEE M., Analysis of musculoskeletal systems in the AnyBody Modeling System, Simul. Model. Pract. Theory, 2006, 14, 1100–1111.
  • [8] HAYDEN A.M., HAYES A.M., BRECHBUHLER J.L., ISRAEL H., PLACE H.M., The effect of pelvic motion on spinopelvic parameters, Spine J., 2018, 18, 173–178.
  • [9] JANSSEN M.M.A., DREVELLE X., HUMBERT L., SKALLI W., CASTELEIN R.M., Differences in male and female spino-pelvic alignment in asymptomatic young adults: A three-dimensional analysis using upright low-dose digital biplanar X-rays, Spine (Phila. Pa. 1976)., 2009, 34, E826–E832.
  • [10] KOBLAUCH H., Low back load in airport baggage handlers, Dissertation, Univeristy of Copenhagen, Denmark, 2015.
  • [11] KORAKAKIS V., O’SULLIVAN K., O’SULLIVAN P.B., EVAGELINOU V., SOTIRALIS Y., SIDERIS A., SAKELLARIOU K., KARANASIOS S., GIAKAS G., Physiotherapist perceptions of optimal sitting and standing posture, Musculoskelet. Sci. Pract., 2019, 39, 24–31.
  • [12] LEVINE J.A., Sick of sitting, Diabetologia, 2015, 58, 1751–1758.
  • [13] LORD M.J., SMALL J.M., DINSAY J.M., WATKINS R.G., Lumbar lordosis: Effects of sitting and standing, Spine (Phila. Pa. 1976), 1997, 22, 2571–2574.
  • [14] LOYEN A., VAN DER PLOEG H.P., BAUMAN A., BRUG J., LAKERVELD J., European sitting championship: Prevalence and correlates of self-reported sitting time in the 28 European Union Member States, PLoS One, 2016, 11, e0149320.
  • [15] MICHNIK R., ZADOŃ H., NOWAKOWSKA-LIPIEC K., JOCHMYCZYK-WOŹNIAK K., MYŚLIWIEC A., MITAS A.W., The effect of the pelvis position in the sagittal plane on loads in the human musculoskeletal system, Acta Bioeng. Biomech., 2020, 22, 33–42.
  • [16] MIESZAŁA W., DEMCZUK-WŁODARCZYK E., CHROMIK K., HAWRYLAK A., MAŁACHOWSKA-SOBIESKA M., Examining relationships of the anterior pelvic tilt angle with the anteriorposterior curvatures and elongation of the spine, Acta Bioeng. Biomech., 2019, 21, 37–44.
  • [17] NACHEMSON A., ELFSTRÖM G., Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises., Scand. J. Rehabil. Med. Suppl., 1970, 1, 1–40.
  • [18] NOWAKOWSKA-LIPIEC K., MICHNIK R., LINEK P., MYŚLIWIEC A., JOCHYMCZYK-WOŹNIAK K., GZIK M., A numerical study to determine the effect of strengthening and weakening of the transversus abdominis muscle on lumbar spine loads, Comput. Methods Biomech. Biomed. Engin., 2020, 1–10, DOI: 10.1080/10255842.2020.1795840.
  • [19] NOWAKOWSKA K., GZIK M., MICHNIK R., MYŚLIWIEC A., JURKOJĆ J., SUCHOŃ S., BURKACKI M., The Loads Acting on Lumbar Spine During Sitting Down and Standing Up, [in:] M. Gzik, E. Tkacz, Z. Paszenda, E. Piętka (Eds.), Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, Springer, Cham, 2017, 169–176.
  • [20] O’SULLIVAN K., O’SULLIVAN P., O’SULLIVAN L., DANKAERTS W., What do physiotherapists consider to be the best sitting spinal posture?, Man. Ther., 2012, 17, 432–437.
  • [21] O’SULLIVAN P.B., GRAHAMSLAW K.M., KENDELL M., LAPENSKIE S.C., MÖLLER N.E., RICHARDS K. V., The effect of different standing and sitting postures on trunk muscle activity in a pain-free population, Spine (Phila. Pa. 1976), 2002, 27, 1238–1244.
  • [22] PHILIPPOT R., WEGRZYN J., FARIZON F., FESSY M.H., Pelvic balance in sagittal and Lewinnek reference planes in the standing, supine and sitting positions, Orthop. Traumatol. Surg. Res., 2009, 95, 70–76.
  • [23] REEVE A., DILLEY A., Effects of posture on the thickness of transversus abdominis in pain-free subjects, Man. Ther., 2009, 14, 679–684.
  • [24] ROHLMANN A., ZANDER T., GRAICHEN F., DREISCHARF M., BERGMANN G., Measured loads on a vertebral body replacement during sitting, Spine J., 2011, 11, 870–875.
  • [25] SATO K., KIKUCHI S., YONEZAWA T., In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems, Spine (Phila. Pa. 1976), 1999, 24, 2468–2474.
  • [26] WILKE H., NEEF P., CAIMI M., HOOGLAND T., CLAES L.E., New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life, Spine (Phila. Pa. 1976), 1999, 24, 755–762.
  • [27] WONG K.W.N., LUK K.D.K., LEONG J.C.Y., WONG S.F., WONG K.K.Y., Continuous Dynamic Spinal Motion Analysis, Spine (Phila. Pa. 1976), 2006, 31, 414–419.
  • [28] ZYZNAWSKA J., FRANKOWSKI G., WODKA-NATKANIEC E., KOŁOMAŃSKA D., BOCZOŃ K., KULESA-MROWIECKA M., Disbalance and fatigue of the spinal extensors as one of the causes of the overload disease of the lumbar spine, Acta Bioeng. Biomech., 2019, 21, 119–125.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42df2a05-b951-4695-8865-84b8808a609b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.