Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Monitoring and structural health assessment are the primary requirements for performance evaluation of damaged bridges. This paper highlights the case-study of a damaged Reinforced Concrete (RC) bridge structure by considering the outcomes of destructive testing, Non-Destructive Testing (NDT) evaluations, static and 3D non-linear analysis methods. Finite element (FE) modelling of this structure is being done using the material properties extracted by the in-situ testing. Analysis is carried out to evaluate the bridge damage based on the data recorded after the static linear (AXIS VM software) and 3D non-linear analysis (ATENA 3D software). Extensive concrete cracking and high value of crack width are found to be the major problems, leading to lowering the performance of the bridge. As a solution, this paper proposes a proper Structural Health Monitoring (SHM) system, that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on bridge.
Czasopismo
Rocznik
Tom
Strony
569--584
Opis fizyczny
Bibliogr. 47 poz., il.
Twórcy
autor
- Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
autor
- Budapest University of Technology and Economics, Faculty of Civil Engineering, Budapest, Hungary
autor
- Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
autor
- University of Wolverhampton, Wolverhampton, United Kingdom
autor
- AGH University of Science, Mechanical Engineering and Robotics, Kraków, Poland
autor
- Cracow University of Technology, Faculty of Civil Engineering, Kraków, Poland
Bibliografia
- [1] Maintenance, Monitoring, Safety, Risk and Resilience of bridges and bridge networks, T.N. Bittencourt, D.M. Frangopol, A. Beck, Eds. Taylor & Francis Group, 2016, pp. 145-153.
- [2] L. Xie, Z. Qu„ “On Civil Engineering Disasters and their Mitigation”, Earthquake Engineering and Engineering Vibrations, 2018, vol. 17, no. 1, pp. 1-10, DOI: 10.1007/s11803-018-0420-6.
- [3] K.G. Papakonstantinou, M. Shinozuka, “Stochastic Control Approaches for Structural Maintenance”, in Maintenance and Safety of Aging Infrastructure, D. Frangopol, Y. Tsompanakis, Eds. CRC Press, 2014, pp. 535-572, DOI: 10.1201/b17073-18.
- [4] F.B.P. de Jong, P.B. Boersma, “Lifetime Calculations for Orthotropic Steel Bridge Decks”, in Structural Faults + Repair 2003 Conference, CD-rom. Engineering Technics Press, 2003, pp. 1-17. [Online]. Available: https://trid.trb.org/view/746169.
- [5] M.M. Shokrieh, A.R.G. Mohammadi, “Nondestructive testing (NDT) techniques in the measurement of residual stresses in composite materials: An overview”, in Residual Stresses in Composite Materials, vol. 2, M. Shokrieh, Ed. Elsevier, 2021, pp. 71-109, DOI: 10.1016/B978-0-12-818817-0.00016-0.
- [6] A.A. Shubbar, Z.S. Al-khafaji, M.S. Nasr, M.W. Falah, “Using Non-Destructive Tests for Evaluating Flyover Footbridge: Case Study”, Technical Science, 2020, vol. 1, no. 1, DOI: 10.51526/kbes.2020.1.01.23-39.
- [7] Ł. Bednarski, R. Sieńko, T. Howiacki, “Analysis of rheological phenomena in reinforced concrete cross-section of Rędzinski Bridge pylon based on in situ measurements”, Procedia Engineering, 2015, vol. 108, pp. 536-543, DOI: 10.1016/j.proeng.2015.06.175.
- [8] A. Pipinato, C. Pellegrino, O.S. Bursi, C. Modena, “High-cycle fatigue behavior of riveted connections for railway metal bridges”, Journal of Construction Steel Research, 2009, vol. 65, no. 12, pp. 2167-2175, DOI: 10.1016/j.jcsr.2009.06.019.
- [9] Applied Technology Council, Recommended Modelling Parameters and Acceptance Criteria for Nonlinear Analysis in Support of Seismic Evaluation, Retrofit & Design. N.I.S.T, 2007, DOI: 10.6028/NIST.GCR.17-917-45.
- [10] P. Szurgott„ “Modelling and numerical analysis of the reinforced concrete viaduct under the eurocity EC-114 train”, Journal of KONES, 2012, vol. 19, no. 2, pp. 515-524, DOI: 10.5604/12314005.1138271.
- [11] W. Li, S. Qin, H. Wang, “Fatigue stress analysis of orthotropic steel bridge decks in Xinghai bay cross-sea bridge”, Archives of Civil Engineering, 2020, vol. 66, no. 1, pp. 327-340, DOI: 10.24425/ace.2020.131791.
- [12] ISO 13822 Bases for design of structures-Assessment of existing structures. ISO Technical Committee ISO/TC 98, 2010. [Online]. Available: https://www.iso.org/standard/46556.html.
- [13] F. Biondni, D.M. Frangopol„ “Assessment and retrofitting of existing bridges”, in Bridge Maintenance, Safety, Manageent, Resilance and Sustainability - Proceedings of Sixth International IABMAS Conference. CRC Press, 2012.
- [14] J. Biliszczuk, P. Hawryszków, M. Teichgraeber, “SHM system and a FEM model-based force analysis assessment in stay cables”, Sensors, 2021, vol. 21, no. 6, pp. 1-27, DOI: 10.3390/s21061927.
- [15] Y. Fujino, “Vibration, control and monitoring of long-span bridges - Recent research, developments and practice in Japan”, Journal of Construction Steel Research, 2002, vol. 58, no. 1, pp. 71-97, DOI: 10.1016/S0143-974X(01)00049-9.
- [16] Z. Chen, X. Zhou, X. Wang, et al., “Deployment of a smart structural health monitoring system for longspan arch bridges: A review and a case study”, Sensors (Switzerland), 2017, vol. 17, no. 9, DOI: 10.3390/s17092151.
- [17] A. Haidarpour, K.F. Tee, “Finite element model updating for structural health monitoring”, SDHM Structural Durability and Health Monitoring, 2020, vol. 14, no. 1, pp. 1-17, DOI: 10.32604/sdhm.2020.08792.
- [18] I. Bayane, E. Brühwiler, “Structural condition assessment of reinforced-concrete bridges based on acoustic emission and strain measurements”, Journal of Civil Structural Health Monitoring, 2020, vol. 10, no. 5, pp. 1037-1055, DOI: 10.1007/s13349-020-00433-0.
- [19] M. Arena, M. Viscardi, “Strain state detection in composite structures: Review and new challenges”, Journal of Composite Science, 2020, vol. 4, no. 2, DOI: 10.3390/jcs4020060.
- [20] M. Kocaman, E.S. Akay, E. Yılmaz, et al., “Monitoring the Damage State of Fiber Reinforced Composites Using an FBG Network for Failure Prediction”, Materials MDPI, 2017, vol. 10, no. 1, DOI: 10.3390/ma10010032.
- [21] N.S. Kim, N.S. Cho, “Estimating deflection of a simple beam model using fiber optic Bragg-grating sensors”, Experimental Mechanics, 2004, vol. 44, no. 4, pp. 433-439, DOI: 10.1007/BF02428097.
- [22] O. Burdet, “Automatic deflection and temperature monitoring of a balanced cantilever concrete bridge”, presented at 5th International Conference of Short and Medium Span Bridges, Calgary, Canada, 1998.
- [23] M. Suangga, T. Haripriambodo, “Maximum deflection of three span continuous bridge using rotation data based on 3 dimensional model”, IOP Conference Series Earth and Environmental Science, 2021, vol. 794, art. ID 012016, DOI: 10.1088/1755-1315/794/1/012016.
- [24] X. Ye, Z. Sun, X. Cai, L. Mei, “An improved step-type liquid level sensing system for bridge structural dynamic deflection monitoring”, Sensors (Switzerland), 2019, vol. 19, no. 9, DOI: 10.3390/s19092155.
- [25] D. Feng, M. Q. Feng, E. Ozer, Y. Fukuda, “A vision-based sensor for noncontact structural displacement measurement”, Sensors (Switzerland), 2015, vol. 15, no. 7, pp. 16557-16575, DOI: 10.3390/s150716557.
- [26] A. ElSafty, A. Abdel-Mohti, “Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks”, International Journal of Concrete Structure and Materials, 2013, vol. 7, no. 1, pp. 79-93, DOI: 10.1007/s40069-013-0034-3.
- [27] B. Borgard, C. Warren, S. Somayaji, R. Heidersbach, “Correlation between corrosion of reinforcing steel and voids and cracks in concrete structures”, Transportation Research Record, 1989, no. 1211, pp. 1-11.
- [28] I. Balafas, C.J. Burgoyne, “Environmental effects on cover cracking due to corrosion”, Cement and Concrete Research, 2010, vol. 40, no. 9, pp. 1429-1440, DOI: 10.1016/j.cemconres.2010.05.003.
- [29] Z. Benniu, S. Wang, X. Li, et al., “Online bridge crack monitoring with smart film”, The Scientific World Journal, 2013, vol. 2013, art. ID 303656, DOI: 10.1155/2013/303656.
- [30] J.T. Kim, J.H. Park, D.S. Hong, W.S. Park, “Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches”, Engineering Structures, 2010, vol. 32, no. 1, pp. 115-128, DOI: 10.1016/j.engstruct.2009.08.021.
- [31] Z. Kral, W. Horn, J. Steck, “Crack propagation analysis using acoustic emission sensors for structural health monitoring systems”, The Scientific World Journal, 2013, vol. 2013, art. ID 823603, DOI: 10.1155/2013/ 823603.
- [32] S. Wang, B. Zhang, G. Yang, C. Ji, Z. Zhou, “Electrical Analysis of Smart Film-Based Crack-Width Monitoring in Bridge Infrastructure System,” Journal of Infrastructure Systems, 2016, vol. 22, no. 1, DOI: 10.1061/(ASCE)IS.1943-555X.0000265.
- [33] A. Bassil, R. Casas, D. Leduc, “Distributed Fiber Optics Sensing for Crack Monitoring of Concrete”, PhD thesis, Nantes University, France, 2019, DOI: 10.13140/RG.2.2.15214.97601.
- [34] P. Ferdinand, “The evolution of optical fiber sensors technologiesduring the 35 last years and their applications instructure health monitoring”, in 7th European workshop on structural health monitoring, Jul 2014, Nantes, France, vol. 16. 2014, pp. 914-929. [Online]. Available: https://hal.inria.fr/hal-01021251/document.
- [35] R. Sieńko, Ł. Bednarski, T. Howiacki, “Distributed Optical Fibre Sensors for Strain and Temperature Monitoring of Early-Age Concrete: Laboratory and In-situ Examples”, in RILEM Bookseries, vol. 31. Springer, 2021, pp. 77-87, DOI: 10.1007/978-3-030-72921-9_7.
- [36] X.W. Ye, Y.H. Su, J.P. Han, “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review”, The Scientific World Journal, 2014, vol. 2014, DOI: 10.1155/2014/652329.
- [37] T. Wu, G. Liu, S. Fu, F. Xing, “Recent progress of fiber-optic sensors for the structural health monitoring of civil infrastructure”, Sensors (Switzerland), 2020, vol. 20, no. 16, pp. 1-25, DOI: 10.3390/s20164517.
- [38] X. Feng, et al., “Pavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion Model”, Mathematical Problems in Engineering, 2020, vol. 2020, DOI: 10.1155/2020/8515213.
- [39] H. Lang, T. Wen, J. Lu, et al., “3D pavement crack detection method based on deep learning”, Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Southeast Univ., 2021, vol. 51, no. 1, pp. 53-60, DOI: 10.3969/j.issn.1001-0505.2021.01.008.
- [40] R. Sieńko, Ł. Bednarski, T. Howiacki, “Smart Composite Rebars Based on DFOS Technology as Nervous System of Hybrid Footbridge Deck: A Case Study”, in Lecture Notes Civil Engineering, vol. 128. Springer, 2021, pp. 331-341, DOI: 10.1007/978-3-030-64908-1_31.
- [41] A. Güemes, A. Fernández-López, B. Soller, “Optical fiber distributed sensing - physical principles and applications”, Structural Health Monitoring, 2010, vol. 9, no. 3, pp. 233-245, DOI: 10.1177/1475921710365263.
- [42] J.F. Choo, D.H. Ha, S.G. Chang, et al., “New Bridge Weigh-in-Motion System Using Piezo-Bearing”, Shock and Vibration, 2018, vol. 2018, DOI: 10.1155/2018/6185695.
- [43] P. Asnachinda, T. Pinkaew, J.A. Laman, “Multiple vehicle axle load identification from continuous bridge bending moment response”, Engineering Structures, 2008, vol. 30, no. 10, pp. 2800-2817, DOI: 10.1016/j.engstruct.2008.02.018.
- [44] A. Žnidarič, J. Kalin, “Using bridge weigh-in-motion systems to monitor single-span bridge influence lines”, Journal of Civil Structural Health Monitoring, 2020, vol. 10, no. 5, pp. 743-756, DOI: 10.1007/s13349-020-00407-2.
- [45] EN 1992-2:2005 Eurocode 2 Design of concrete structures - Concrete bridges - Design and detailing rules. CEN, 2005, 2011.
- [46] Hungarian Standards Authority, MSZ-07-3701-67 Hungarian Standard: Statical calculation of road bridges, vol. 1. 1967.
- [47] M. Fawad, K. Kalman, R.A. Khushnood, M. Usman, “Retrofitting of damaged reinforced concrete bridge structure”, Procedia Structural Integrity, 2019, vol. 18, pp. 189-197, DOI: 10.1016/j.prostr.2019.08.153.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42d98255-5b8d-4506-a8be-f04038ec4d0d