Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There are a wide variety of formalisms for defeasible reasoning that can be seen as implementing concrete argumentation on defeasible rules. However there has been little work on the relationship between such languages and Dung’s abstract argumentation. In this paper we identify two small fragments of defeasible rule languages on which many concrete defeasible formalisms agree. The two fragments are closely related, as we show. Both arise as ways to express abstract argumentation frameworks in the concrete formalisms. Using these fragments, we establish a close relationship between abstract argumentation under semantics based on complete extensions, and ambiguity blocking logics in the framework of Antoniou et al. These results support a uniform approach to deriving complexity lower bounds for defeasible formalisms, where a lower bound is established for abstract argumentation and can then be extended “for free” to corresponding concrete defeasible formalisms.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
233--260
Opis fizyczny
Bibliogr. 62 poz., rys.
Twórcy
autor
- School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia
Bibliografia
- [1] Dung PM. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif. Intell., 1995;77(2):321–358. doi:10.1016/0004-3702(94)00041-X.
- [2] Dimopoulos Y, Kakas AC. Logic Programming without Negation as Failure. In: Proceedings of the 1995 International Symposium on Logic Programming. 1995 pp. 369–384. URL http://dblp.uni-trier.de/db/conf/slp/slp95.html#DimopoulosK95.
- [3] Governatori G, Maher MJ, Antoniou G, Billington D. Argumentation Semantics for Defeasible Logic. J. Log. Comput., 2004;14(5):675–702. URL https://doi.org/10.1093/logcom/14.5.675.
- [4] Antoniou G, Billington D, Governatori G, Maher MJ. Representation results for defeasible logic. ACM Trans. Comput. Log., 2001;2(2):255–287. doi:10.1145/371316.371517.
- [5] Caminada M, Sá S, Alcântara J, Dvorák W. On the equivalence between logic programming semantics and argumentation semantics. Int. J. Approx. Reasoning, 2015;58:87–111. URL https://doi.org/10.1016/j.ijar.2014.12.004.
- [6] Antoniou G, Billington D, Governatori G, Maher MJ. A Flexible Framework for Defeasible Logics. In: AAAI/IAAI. AAAI Press / The MIT Press, 2000 pp. 405–410. ISBN:0-262-51112-6.
- [7] Maher MJ. Resistance to Corruption of Strategic Argumentation. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. 2016 pp. 1030–1036. URL http://dl.acm.org/citation.cfm?id=3015812.3015965.
- [8] Maher MJ. Relating Concrete Argumentation Formalisms and Abstract Argumentation. In: Technical Communications of the 31st International Conference on Logic Programming. 2015.
- [9] Amgoud L, Bodenstaff L, Caminada M, McBurney P, Parsons S, Prakken H, van Veenen J, Vreeswijk G. Final review and report on formal argumentation system. Technical report, 2006.
- [10] Prakken H. An abstract framework for argumentation with structured arguments. Argument and Computation, 2010;1:93–124. URL http://dx.doi.org/10.1080/19462160903564592.
- [11] Wu Y, Podlaszewski M. Implementing crash-resistance and non-interference in logic-based argumentation. J. Log. Comput., 2015;25(2):303–333. doi:10.1093/logcom/exu017.
- [12] Bondarenko A, Dung PM, Kowalski RA, Toni F. An Abstract, Argumentation-Theoretic Approach to Default Reasoning. Artif. Intell., 1997;93(1-2):63–101. URL https://doi.org/10.1016/S0004-3702(97)00015-5.
- [13] García AJ, Simari GR. Defeasible Logic Programming: An Argumentative Approach. TPLP, 2004;4(2):95–138. doi:10.1017/S1471068403001674.
- [14] Roberts RB, Goldstein IP. The FRL Manual. Technical report, MIT AI Lab, 1977.
- [15] Fahlman S. NETL: A System for Representing and Using Real-World Knowledge. MIT Press, 1979.
- [16] Touretzky DS. The Mathematics of Inheritance Systems. Morgan Kaufmann, 1986. ISBN 0-934613-06-0.
- [17] Thomason RH. NETL and subsequent path-based inheritance theories. Computers Math. Applic., 1992;23(2-5):179–204. URL https://doi.org/10.1016/0898-1221(92)90140-D.
- [18] Nute D. Defeasible Logic. In: Proc. 14th International Conference on Applications of Prolog, volume 2543 of Lecture Notes in Computer Science. Springer, 2003 pp. 151–169. doi:10.1007/3-540-36524-9_13.
- [19] Maier F, Nute D. Well-founded semantics for defeasible logic. Synthese, 2010;176(2):243–274. doi:10.1007/s11229-009-9492-1.
- [20] Laenens E, Vermeir D. A Fixpoint Semantics for Ordered Logic. J. Log. Comput., 1990;1(2):159–185. URL https://doi.org/10.1093/logcom/1.2.159.
- [21] Billington D, Antoniou G, Governatori G, Maher MJ. An inclusion theorem for defeasible logics. ACM Trans. Comput. Log., 2010;12(1):6. doi:10.1145/1838552.1838558.
- [22] Maher MJ. Relative Expressiveness of Well-Founded Defeasible Logics. In: Proc. Australasian Joint Conf. on Artificial Intelligence. 2013 pp. 338–349.
- [23] Billington D. A Defeasible Logic for Clauses. In: AI 2011: Advances in Artificial Intelligence, volume 7106 of Lecture Notes in Artificial Intelligence. Springer, 2011 pp. 472–480. doi:10.1007/978-3-642-25832-9_48.
- [24] Billington D. A Propositional Plausible Logic. In: Proc. 28th Australasian Joint Conference on Artificial Intelligence, volume 9457 of Lecture Notes in Artificial Intelligence. Springer, 2015 pp. 76–82. doi:10.1007/978-3-319-26350-2_7.
- [25] Grosof BN. Compiling Prioritized Default Rules Into Ordinary Logic Programs. Technical report, IBM, 1999.
- [26] Wan H, Grosof BN, Kifer M, Fodor P, Liang S. Logic Programming with Defaults and Argumentation Theories. In: ICLP. 2009 pp. 432–448. doi:10.1007/978-3-642-02846-5_35.
- [27] Clark KL. Negation as Failure. In: Logic and Data Bases. 1978 pp. 293–322.
- [28] Wan H, Kifer M, Grosof BN. Defeasibility in answer set programs with defaults and argumentation rules. Semantic Web, 2015;6(1):81–98. doi:10.3233/SW-140140.
- [29] Grosof B, Kifer M. Rulelog: Syntax and Semantics. http://ruleml.org/rif/rulelog/spec/Rulelog.html, 2013. Accessed: April 2015.
- [30] Verheij B. DefLog: on the Logical Interpretation of Prima Facie Justified Assumptions. J. Log. Comput., 2003;13(3):319–346.
- [31] Maher MJ. Human and Unhuman Commonsense Reasoning. In: LPAR (Yogyakarta). 2010 pp. 16–29. doi:10.1007/978-3-642-16242-8_3.
- [32] Brewka G. Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences. J. Artif. Intell. Res. (JAIR), 1996;4:19–36. doi:10.1613/jair.284.
- [33] Touretzky DS, Horty JF, Thomason RH. A Clash of Intuitions: The Current State of Nonmonotonic Multiple Inheritance Systems. In: IJCAI. 1987 pp. 476–482.
- [34] Kunen K. Negation in Logic Programming. J. Log. Program., 1987;4(4):289–308. URL https://doi.org/10.1016/0743-1066(87)90007-0.
- [35] Fitting M. A Kripke-Kleene Semantics for Logic Programs. J. Log. Program., 1985;2(4):295–312. URL https://doi.org/10.1016/S0743-1066(85)80005-4.
- [36] Maher MJ, Governatori G. A Semantic Decomposition of Defeasible Logics. In: AAAI/IAAI. AAAI Press, 1999 pp. 299–305.
- [37] Maher MJ. Comparing Defeasible Logics. In: Proc. European Conf. on Artificial Intelligence. 2014 pp. 585–590. doi:10.3233/978-1-61499-419-0-585.
- [38] Przymusinski TC. The Well-Founded Semantics Coincides with the Three-Valued Stable Semantics. Fundam. Inform., 1990;13(4):445–463. URL http://dl.acm.org/citation.cfm?id=107720.107722.
- [39] Gelder AV, Ross KA, Schlipf JS. The Well-Founded Semantics for General Logic Programs. J. ACM, 1991;38(3):620–650. doi:10.1145/116825.116838.
- [40] Gelfond M, Lifschitz V. The Stable Model Semantics for Logic Programming. In: Proc. ICLP & SLP. 1988 pp. 1070–1080.
- [41] You J, Yuan L. A Three-Valued Semantics for Deductive Databases and Logic Programs. J. Comput. Syst. Sci., 1994;49(2):334–361. URL https://doi.org/10.1016/S0022-0000(05)80053-4.
- [42] Eiter T, Leone N, Saccà D. On the Partial Semantics for Disjunctive Deductive Databases. Ann. Math. Artif. Intell., 1997;19(1-2):59–96. doi:10.1023/A:1018947420290.
- [43] Dung PM, Kanchanasut K. A Fixpoint Approach to Declarative Semantics of Logic Programs. In: Proc. NACLP. 1989 pp. 604–625.
- [44] Aravindan C, Dung PM. On the Correctness of Unfold/Fold Transformation of Normal and Extended Logic Programs. J. Log. Program., 1995;24(3):201–217. URL https://doi.org/10.1016/0743-1066(94)00104-E.
- [45] Saccà D, Zaniolo C. Stable Models and Non-Determinism in Logic Programs with Negation. In: Proc. PODS. 1990 pp. 205–217. doi:10.1145/298514.298572.
- [46] Kakas AC, Mancarella P. Short Note: Preferred Extensions are Partial Stable Models. J. Log. Program., 1992;14(3-4):341–348. URL https://doi.org/10.1016/0743-1066(92)90015-U.
- [47] You J, Yuan L. On the Equivalence of Semantics for Normal Logic Programs. J. Log. Program., 1995;22(3):211–222. URL https://doi.org/10.1016/0743-1066(94)00023-Y.
- [48] Tamaki H, Sato T. Unfold/Fold Transformation of Logic Programs. In: Proc. ICLP. 1984 pp. 127–138.
- [49] Maher MJ. Correctness of a Logic Program Transformation System. Technical report, IBM T.J. Watson Research Center, 1988.
- [50] Nute D. Defeasible Logic. In: Gabbay D, Hogger C, Robinson J (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. III, pp. 353–395. Oxford University Press, 1994. ISBN:0-19-853747-6.
- [51] Lam HP, Governatori G. What are the Necessity Rules in Defeasible Reasoning? In: LPNMR, volume 6645 of Lecture Notes in Computer Science, pp. 187–192. Springer, 2011. doi:10.1007/978-3-642-20895-9_17.
- [52] Caminada M, Sá S, Alcântara J, Dvořák W. On the Difference between Assumption-Based Argumentation and Abstract Argumentation. IfCoLog Journal of Logics and their Applications, 2015;2(1):15–34. URL http://hdl.handle.net/2164/4844.
- [53] Maier F. Interdefinability of defeasible logic and logic programming under the well-founded semantics. TPLP, 2013;13:107–142. doi:10.1017/S147106841100041X.
- [54] Prakken H, Sartor G. Modelling Reasoning with Precedents in a Formal Dialogue Game. Artif. Intell. Law, 1998;6(2-4):231–287. doi:10.1007/978-94-015-9010-5_5.
- [55] Booth R, Gabbay DM, Kaci S, Rienstra T, van der Torre LWN. Abduction and Dialogical Proof in Argumentation and Logic Programming. In: ECAI 2014 - 21st European Conference on Artificial Intelligence. 2014 pp. 117–122. URL http://orca.cf.ac.uk/id/eprint/89685.
- [56] Maher MJ. Complexity of Exploiting Privacy Violations in Strategic Argumentation. In: Proc. Pacific Rim International Conf. on Artificial Intelligence. 2014 pp. 523–535. doi:10.1007/978-3-319-13560-1_42.
- [57] Governatori G, Olivieri F, Scannapieco S, Rotolo A, Cristani M. Strategic Argumentation is NP-Complete. In: Proc. European Conf. on Artificial Intelligence. 2014 pp. 399–404.
- [58] Governatori G, Maher MJ, Olivieri F, Scannapieco S, Rotolo A. The Complexity of Strategic Argumentation under Grounded Semantics. In: Proc. European Conf. on Multi-Agent Systems. 2014 pp. 379–387.
- [59] Baumann R, Brewka G. Expanding Argumentation Frameworks: Enforcing and Monotonicity Results. In: COMMA. 2010 pp. 75–86. ISBN:978-1-60750-618-8.
- [60] Maher MJ. Resistance to Corruption of General Strategic Argumentation. In: Proc. Int. Conf. on Principles and Practice of Multi-Agent Systems. 2016 pp. 61–75. doi:10.1007/978-3-319-44832-9_4.
- [61] Dung PM, Mancarella P, Toni F. Computing ideal sceptical argumentation. Artif. Intell., 2007;171(10-15):642–674. URL https://doi.org/10.1016/j.artint.2007.05.003.
- [62] Caminada M. Comparing Two Unique Extension Semantics for Formal Argumentation: Ideal and Eager. In: Proc. of the 2007 Benelux Conf. on Artificial Intelligence. 2007 pp. 81–87
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42d2be99-98c5-45ad-9a17-099dbe918210