PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prioritization approach for circuit breakers to equip with condition monitoring devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Circuit Breakers (CBs) play an important role in ensuring the safe operation of protection systems. Condition Monitoring (CM) devices are widely implemented to extend lifetime, and to improve the maintenance quality. The present paper proposes a cost-based prioritization approach for CBs in a network equipped with CM devices. To this end, a mathematical formulation is developed for the categorization and modeling of equipment failures based on their severity. This formulation quantifies the effect of the CM devices on the outage rate of the equipment. The reliability parameters of the substations 400/132/20 KV, including the failure rate, λ, average repair time, r, average outage time, U, substations, in two status of without CM and with CM of the CBs are calculated. These parameters are calculated implementing a minimal cut-set method. The outage rate of equipment with and without the CM devices is used to determine the effect of the CM devices on the reliability of the network. Finally, the prioritization of substations to install the CM devices on the CBs has been investigated in terms of the Expected Energy Not Supplied (EENS) and costs of CM. To verify the effectiveness and applicability of the method, the proposed approach is applied to the CBs in the power transmission network in the Khorasan Regional Electricity Company (KREC) in Iran.
Rocznik
Strony
403--422
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
  • Fanavaran Energy Toos Company, Mashhad Iran
  • Electrical and Computer Engineering Department Hakim Sabzevari University, Sabzevar Iran
  • Khorasan Regional Electricity Company (KREC), Mashhad Iran
Bibliografia
  • [1] Compare M., Bellani L., Zio E. et al., Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network, Reliability Engineering and System Safety, vol. 184, pp. 164–180 (2019).
  • [2] Falahati B., Fu Y., Mousavi M.J. et al., Reliability Modeling and Evaluation of Power Systems with Smart Monitoring, IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 1087–1095 (2013).
  • [3] Compare M., Bellani L., Zio E. et al., Reliability model of a component equipped with PHM capabilities, Reliability Engineering and System Safety, no. 168, pp. 4–11 (2017).
  • [4] Murat Y., Sun X.A., Gebraeel N.Z. et al., Sensor-Driven Condition-Based Generator Maintenance Scheduling – Part I: Maintenance Problem, IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4253–4262 (2016).
  • [5] Murat Y., Sun X.A., Gebraeel N.Z. et al., Sensor-Driven Condition-Based Generator Maintenance Scheduling – Part II: Incorporating Operations, IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4263–4271 (2016).
  • [6] Substation A.C. et al., NERC Technical Report; AC Substation Equipment Failure Report, available on: http://www.nerc.com/comm/PC, accessed 2014.
  • [7] Endrenyi J. et al., Reliability Modeling in Electric Power Systems, New York, Wiley (1979).
  • [8] Anders G.J., Endrenyi J., Ford G.L., Stone G.C. et al., A probabilistic model for evaluating the remaining life of electrical insulation in rotating machines, IEEE Transactions on Energy Conversion, vol. 5, no. 4, pp. 761–767 (1990).
  • [9] Anders G.J., Endrenyi J., Ford G.L., Lyles J., Sedding H., Maksymiuk J., Stein J., Loberg D. et al., Maintenance planning based on probabilistic modeling of aging in rotating machines, in Proc. CIGRE International Conference on Large High Voltage Electric Systems (1992).
  • [10] Endrenyi J., Anders G., da Silva A.M.L. et al., Probabilistic evaluation of the effect of maintenance on reliability—An application, IEEE Transactions on Power Systems, vol. 13, no. 2, pp. 576–582 (1998).
  • [11] Abeygunawardane S.K., Jirutitijaroen P. et al., New state diagrams for probabilistic maintenance models, IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2207–2213 (2011).
  • [12] Jirutitijaroen P., Singh C. et al., The effect of transformer maintenance parameters on reliability and cost: A probabilistic model, Electric Power Systems Research, vol. 72, no. 3, pp. 213–224 (2004).
  • [13] Natti S., Jirutitijaroen P., Kezunovic M., Singh C. et al., Circuit breaker and transformer inspection and maintenance: probabilistic models, International Conference on Probabilistic Methods Applied to Power Systems, Ames, IA: IEEE, pp. 1003–1008 (2004).
  • [14] Natti S., Kezunovic M., Singh C. et al., Sensitivity analysis on the probabilistic maintenance model of circuit breaker, 9 th International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden (2006), DOI: 10.1109/PMAPS.2006.360276.
  • [15] Welte T.M. et al., Using State Diagrams for Modeling Maintenance of Deteriorating Systems, IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 58–66 (2009).
  • [16] Abeygunawardane S.K., Jirutitijaroen P. et al., A Realistic Maintenance Model Based on a New State Diagram, 11th International Conference on Probabilistic Methods Applied to Power System, Singapore (2010), DOI: 10.1109/PMAPS.2010.5528837.
  • [17] Abeygunawardane S.K., Jirutitijaroen P. et al., Application of probabilistic maintenance models for selecting optimal inspection rates considering reliability and cost tradeoff, IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 178–186 (2014).
  • [18] Zhong J., Li W., Wang C., Yu J., Xu R. et al., Determining Optimal Inspection Intervals in Maintenance Considering Equipment Aging Failures, IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1474–1482 (2014).
  • [19] Yang F., Kwan C.M., Chang C.S., Multiobjective evolutionary optimization of substation maintenance using decision-varying Markov model, IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1328–1335 (2008).
  • [20] Yang F., Chang C.S., Multiobjective evolutionary optimization of maintenance schedules and extents for composite power systems, IEEE Transactions on Power Systems, vol. 24, no. 4, pp. 1694–1702 (2009).
  • [21] Dehghanian P., Fotuhi-Firuzabad M., Aminifar F., Billinton R., A Comprehensive Scheme for Reliability Centered Maintenance in Power Distribution Systems—Part I: Methodology, IEEE Transactions on Power Delivery, vol. 28, no. 2, pp. 761–770 (2013).
  • [22] Alaswad S., Xiang Y., A review on condition-based maintenance optimization models for stochastically deteriorating system, Reliability Engineering and System Safety, no. 157, pp. 54–63 (2017).
  • [23] Lin P., Gu J., Yang M., An intelligent maintenance model to assess the condition-based maintenance of circuit breakers, International Transactions on Electrical Energy Systems, vol. 25, pp. 2376–2393 (2015).
  • [24] Bris R., Byczanski P., Gono R., Rusek S., Discrete maintenance optimization of complex multicomponent systems, Reliability Engineering and System Safety, no. 168, pp. 80–89 (2017).
  • [25] Zio E., Compare M., Evaluating maintenance policies by quantitative modeling and analysis, Reliability Engineering and System Safety, no. 109, pp. 53–65 (2013).
  • [26] Sadiki S., Faccio M., Ramadany M., Amgouz D., Boutahar S., Impact of intelligent wireless sensor network on Predictive maintenance cost, 4th International Conference on Optimization and Applications (ICOA), Mohammedia, Morocco, pp. 1–6 (2018).
  • [27] Zhang D., Li W., Xiong X., Overhead Line Preventive Maintenance Strategy Based on Condition Monitoring and System Reliability Assessment, IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1839–1846 (2014).
  • [28] Razi-Kazemi A.A., Matti L., Aging failure model of circuit breakers equipped with condition monitoring systems, International Transactions on Electrical Energy Systems, vol. 27, no. 12, pp. 1839–1846 (2017).
  • [29] Nighot R., Incorporating substation and switching station related outages in composite system reliability evaluation, PhD Thesis (2003).
  • [30] Billinton R., Allan R.N., Reliability evaluation of engineering systems, New York: Plenum Press (1992).
  • [31] Gonzalez-Longatt F.M., Rueda J.L., Power Factory applications for power system analysis, Springer (2014).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42d1c35f-4125-4a94-8a81-6efd0921e379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.