PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tetrahydrofurfuryl-functionalized polystyrene nanoparticles as collectors for low rank coal flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, tetrahydrofurfuryl-functionalized polystyrene nanoparticles (TFPNs) were evaluated as collectors in low-rank coal flotation. A series of TFPNs were prepared by immobilizing tetrahydrofurfuryl groups onto the surface of polystyrene nanoparticles (PNs), and further characterized in terms of their size, shape, surface charge and surface functionalization group concentration (SFGC). The coal flotation performance using TFPNs was compared to that using PNs and diesel oil (DO). The interaction mechanisms between TFPNs and low-rank coal were also discussed. The results show that TFPNs gave higher recovery than that given by PNs and DO. Smaller TFPNs were more effective flotation collectors. The recovery of TFPNs increased firstly and then decreased with SFGC. TFPNs can specifically deposit onto the low-rank coal particles with the hydrogen bonding function between tetrahydrofurfuryl groups and oxygen-containing functional groups, and promote low-rank coal flotation by increasing the hydrophobicity and roughness of coal particle surface with the adsorbed TFPNs. It was demonstrated that TFPNs introduced a new class of collectors for low rank coal flotation.
Słowa kluczowe
Rocznik
Strony
516--527
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, PR China
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, PR China
  • ruiyin@126.com
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, PR China
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, PR China
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, PR China
Bibliografia
  • ABARCA, C., ALI, M. M., PELTON, R. H., 2018. Choosing mineral flotation collectors from large nanoparticle libraries. J. Colloid Interf. Sci. 516, 423-430.
  • ABARCA, C., YANG, S.T., PELTON, R. H., 2015. Towards high throughput screening of nanoparticle flotation collectors. J. Colloid Interf. Sci. 460, 97-104.
  • AN, M.Y., LIAO, Y.F., GUI, X.H., ZHAO, Y.F., HE, Y.C., LIU, Z.C., LAI, Q.T., 2017. An investigation of coal flotation using nanoparticles as a collector. Int. J. Coal Prep. Util. https: // doi.org / 10.1080 / 19392699. 2017. 1402767.
  • BEHZAD, V.H., HIDAYET, C., ONUR, G., FIRAT, K., MUSTAFA, C., MEHMET, S.C., 2016. Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids Surf. A Physicochem. Eng. Asp. 492, 88-99.
  • CHANDER, S., POLAT, H., MOHAL, B., 1994. Flotation and wettability of a low-rank coal in the presence of surfactants, Miner. Metall. Process. 11, 55-61.
  • DONG, X.F., 2016. Soft nanoparticle flotation collectors, Doctoral Dissertation, McMaster University: Hamilton, Ontario, Canada.
  • DONG, X.F., MARWAY, H.S., CRANSTON, E.D., PELTON, R.H., 2016. Relating Nanoparticle Shape and Adhesiveness to Performance as Flotation Collectors. Ind. Eng. Chem. Res. 55, 9633-9638.
  • DONG, X.F., PRICE, M., DAI, Z.F., XU, M.Q., PELTON, R., 2017. Mineral-mineral particle collisions during flotation remove adsorbed nanoparticle flotation collectors. J. Colloid Interf. Sci. 504, 178-185.
  • FIRAT, K., BEHZAD, V.H., 2016. Effect of surface roughness on interaction of particles in flotation. Physicochem. Probl. Miner. Process. 52(1), 18-34.
  • GUI, X.H., XING, Y.W., WANG, T.X., CAO, Y.J., MIAO, Z.Y., XU, M.D., 2017. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid. Powder Technol. 305, 109-116.
  • HAJATI, A., SHAFAEI, S.Z., NOAPARAST, M., FARROKHPAY, S., ASLANI, S., 2016. Novel application of talc nanoparticles as collector in flotation. RSC ADV. 6, 98096-98103.
  • JENA, M.S., BISWAL, S.K., RUDRAMUNIYAPPA, M.V., 2008. Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal, Int. J. Miner. Process. 87, 42-50.
  • JIA, R.H., HARRIS, G.H., FUERSTENAU, D.W., 2000. An improved class of universal collectors for the flotation of oxidized and or low-rank coal. Int. J. Miner. Process. 58, 99-118.
  • LIAO, Y.F., CAO, Y.J., LIU, C.Q., ZHU, G.L., 2016. A Study of Kinetics on Oily-Bubble Flotation for a Low-Rank Coal. Int. J. Coal Prep. Util. 36(3), 151-162.
  • LIAO, Y.F., CAO, Y.J., ZHAO, Y.F., ZHU, G.L., 2017. Comparison of the effect of particle size on the flotation kinetics of a low-rank coal using air bubbles and oily bubbles. J. S. Afr. I. Min. Metall. 117(6), 561-566.
  • MEHDI, R., MOHAMMAD, A.T., ABBAS, S., 2016. Single-step synthesis of SiO2-TiO2 hydrophobic core-shell nanocomposite by hydrothermal method. J. Clust. Sci. 27, 583-592.
  • SHOBHANA, D., 2012. Enhancement in hydrophobicity of low rank coal by surfactants-A critical overview. Fuel Process. Technol. 94, 151-158.
  • TIAN, Q. Z., WANG, Y. T., LI, G. S., 2017. Application of special collectors and flotation column for beneficiation low rank coal slimes. Physicochem. Probl. Miner. Process. 53(1), 553-568.
  • XIA, W.C., YANG, J.G., LIANG, C., 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technol. 237, 1-8.
  • XIA, W. C., NI, C., XIE, G. Y., 2016. Effective Flotation of Lignite Using a Mixture of Dodecane and 4-Dodecylphenol (DDP) as a Collector. Int. J. Coal Prep. Util. 36(5), 262-271.
  • XING, Y.W., GUI, X.H., CAO, Y.J., WANG, Y.W., XU, M.D., WANG, D.Y., LI, C.W., 2016. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technol. 305, 166-173.
  • YANG, S.T., 2011. Nanoparticle flotation collectors, Doctoral Dissertation, McMaster University: Hamilton, Ontario, Canada.
  • YANG, S.T., PELTON, R., 2011. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity. Langmuir. 27, 11409-11415.
  • YANG, S.T., PELTON, R., ABARCA, C., DAI, Z.F., MONTGOMERY, M., XU, M.Q., BOS, J.A., 2013. Towards nanoparticle flotation collectors for pentlandite separation. Int. J. Miner. Process. 123, 137-144.
  • YANG, S.T., PELTON, R., MONTGOMERY, M., CUI, Y.G., 2012. Nanoparticle flotation collectors iii: the role of nanoparticle diameter. ACS Appl. Mater. Inter. 4(9), 4882-4890.
  • YANG, S.T., RAZAVIZADEH, B. B., PELTON, R., BRUIN, G., 2013. Nanoparticle flotation collectors-the influence of particle softness. ACS Appl. Mater. Inter. 5(11), 4836-4842.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42cf33e8-0ab5-45ed-93e7-f6c91c05ca90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.