Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new ultrasound digital transcranial Doppler system (digiTDS) is introduced. The digiTDS enables diagnosis of intracranial vessels which are rather difficult to penetrate for standard systems. The device can display a color map of flow velocities (in time-depth domain) and a spectrogram of a Doppler signal obtained at particular depth. The system offers a multigate processing which allows to display a numer of spectrograms simultaneously and to reconstruct a flow velocity profile. The digital signal processing in digiTDS is partitioned between hardware and software parts. The hardware part (based on FPGA) executes a signal demodulation and reduces data stream. The software part (PC) performs the Doppler processing and display tasks. The hardware-software partitioning allowed to build a flexible Doppler platform at a relatively low cost. The digiTDS design fulfills all necessary medical standards being a new useful tool in the transcranial field as well as in heart velocimetry research.
Wydawca
Czasopismo
Rocznik
Tom
Strony
773--781
Opis fizyczny
Bibliogr. 20 poz., fot., rys., wykr.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Sonomed Sp. z o.o., Pruszkowska 4d, 02-118 Warszawa, Poland
Bibliografia
- 1. Ali M., Magee D., Dasgupta U. (2008), Signal processing overview of ultrasound systems for medical imaging, Texas Instruments, White Paper, SPRAB12.
- 2. Aydin N., Fan L., Evans D. H. (1994), Quadrature-todirectional format conversion of Doppler signals using digital methods, Physiol. Meas., 15, 181-199.
- 3. Bassam S. A., Ebrahimi M. M., Kwan A., Helaoui M., Aflaki M. P., Hammi O., Fattouche M., Ghannouchi F. M. (2009), A generic architecture for smart multi-standard software defined radio systems, presented at the SDR’09 Technical Conference and Product Exposition, Washington, D.C., USA, December 1–4.
- 4. Bjaerum S., Torp H. (2000), Statistical evaluation of clutter filters in color flow imaging, Ultrasonics, 38, 376–380.
- 5. Chang J. H., Sun L., Yen J. T., Shung K. K. (2009), Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 7, 1490–1497.
- 6. DWL Multi-Dop X Digital documentation: http://dwl.de/fixfoxdateien/pdf/DWL-datasheet multi-dop-xdigital.pdf.
- 7. Fan L., Boni E., Tortoli P., Evans D. H. (2006), Multigate Transcranial Doppler Ultrasound System with Real-Time Embolic Signal Identification and Archival, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 10, 1853–1861.
- 8. Garcia P., Compton K., Schulte M., Blem E., Fu W. (2006), An overview of reconfigurable hardware in embedded systems, EURASIP Journal on Embedded Systems, Volume 2006, Article ID 56320.
- 9. Harris F. J. (2004), Multirate signal processing for communication systems, Prentice Hall PTR, ISBN 9780131465114.
- 10. Hogenauer E. (1981), An economical class of digital filters for decimation and interpolation, IEEE Trans. Acoust., 29, 155–162.
- 11. Kadi A. P., Loupas T. (1995), On the Loupas T. (1995), On the performance of regression and step-initialized IIR clutter filters for color Doppler systems in diagnostic medical ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 42, 5, 927–937.
- 12. Lewandowski M., Walczak M., Nowicki A. (2009), Compact modular Doppler system with digital RF processing, in Proceedings of IEEE International Ultrasonics Symposium, Roma, Italy, September 20–23, 1848–1851.
- 13. Lyons R. G. (2004), Understanding digital signal processing, second edition. Prentice Hall, Upper Saddle River, New Jersey, chapter 10.5.
- 14. Martinez-Nieto D., McDonnell M., Carlston P., Reynolds K., Santos V. (2009), Digital signal processing on Intel architecture, Intel Technol. Journal, 13, 1, 122–145.
- 15. Reed J. H. (2002), Software Radio: A modern approach to radio engineering, Prentice Hall, ISBN 9780130811585.
- 16. Ricci S., Dallai A., Boni E., Bassi L., Guidi F., Cellai A., Tortoli P. (2008), Embedded system for real-time digital processing of medical ultrasound Doppler signals, EURASIP Journal on Advances in Signal Processing, Volume 2008, Article ID 418235.
- 17. RIMED Digi-Lite documentation: http://www.rimed.com/site/down/RIMED005Catalogue%20v8%20by%20pages%20high%20resoultion.pdf.
- 18. SONARA TCD System documentation: http://www.viasyshealthcare.com/prod serv/prodDetail.aspx?config=ps prodDtl&prodID=158.
- 19. Taylor S. (2004), Intel integrated performance primitives, Intel Press, ISBN 978-0971786134.
- 20. Yu A. C. H., Johnston K. W., Cobbold R. S. C. (2007), Frequency-based signal processing for ultrasound color flow imaging, Canadian Acoustics, 35, 2, 11–23.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42cdabda-a194-431d-a2a5-9f4ef3358a06