PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Swarm Intelligence - conductorless orchestra

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Swarm Intelligence (SI) is a kind of Artificial Intelligence that emerges from local interactions. By principle, systems based on SI are decentralized - they do not have access to the global knowledge. The initial study on SI was on the natural swarms, e.g., ants, flocks of birds, and schools of fish. Swarms have an ability to self-organize, which brings a unique set of features and applications. Despite their origin in biology, SI systems were adopted into technology. At the very beginning, they were used to solve optimization problems, e.g., Ant Colony Optimization and Particle Swarm Optimization; however, they were later adopted in the field of robotics, which is called swarm robotics. Although those are two primary fields of research in SI, other applications, such as in telecommunications, are also presented in this article. Furthermore, the problem of creating SI systems and the current methods used for designing and modelling the swarm systems are presented.
Rocznik
Strony
569--582
Opis fizyczny
Bibliogr. 87 poz., tab., fot., rys.
Twórcy
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] J. Kennedy, Swarm Intelligence. Boston, MA: Springer US, 2006, pp. 187-219. [Online]. Available: https://doi.org/10.1007/0-387-27705-6_6
  • [2] M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present, and future,” Proceedings of the IEEE, vol. 109, pp. 1152-1165, 07 2021. [Online]. Available: https://doi.org/10.1109/JPROC.2021.3072740
  • [3] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from the swarm engineering perspective,” pp. 1-41, Mar 2013. [Online]. Available: https://doi.org/10.1007/s11721-012-0075-2
  • [4] T. Kuyucu, I. Tanev, and K. Shimohara, “Superadditive effect of multi-robot coordination in the exploration of unknown environments via stig-mergy,” Neurocomputing, vol. 148, pp. 83-90, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231214009242
  • [5] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm robotic behaviors and current applications,” Frontiers in Robotics and AI, vol. 7, 2020. [Online]. Available: https://doi.org/10.3389/frobt.2020.00036
  • [6] O. Soysal, E. Bahçeci, and E. Sahin, “Aggregation in swarm robotic systems: Evolution and probabilistic control,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 15, pp. 199-225, 2007. [Online]. Available: https://api.semanticscholar.org/CorpusID:16198241
  • [7] W. Spears, D. Spears, J. Hamann, and R. Heil, “Distributed, physics-based control of swarms of vehicles,” Auton. Robots, vol. 2, 06 2004. [Online]. Available: https://doi.org/10.1023/B:AURO.0000033970.96785.f2
  • [8] A. Christensen, R. O’Grady, and M. Dorigo, “Swarmorph-script: A language for arbitrary morphology generation in self-assembling robots,” Swarm Intelligence, vol. 2, pp. 143-165, 12 2008. [Online]. Available: https://doi.org/10.1007/s11721-008-0012-6
  • [9] G. H. Gebhardt, K. Daun, M. Schnaubelt, A. Hendrich, D. Kauth, and G. Neumann, “Learning to assemble objects with a robot swarm,” in Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, ser. AAMAS ’17. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2017, p. 1547-1549.
  • [10] M. Bakhshipour, M. J. Ghadi, and F. Namdari, “Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach,” Applied Soft Computing, vol. 57, pp. 708-726, 2017. [Online]. Available: https://doi.org/10.1016/j.asoc.2017.02.028
  • [11] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837-855, 2018. [Online]. Available: https://doi.org/10.1109/TRO.2018.2857475
  • [12] M. Akter, J. J. Keya, K. Kayano, A. M. R. Kabir, D. Inoue, H. Hess, K. Sada, A. Kuzuya, H. Asanuma, and A. Kakugo, “Cooperative cargo transportation by a swarm of molecular machines,” Science Robotics, vol. 7, no. 65, p. eabm0677, 2022. [Online]. Available: https://doi.org/10.1126/scirobotics.abm0677
  • [13] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795-799, 2014. [Online]. Available: https://doi.org/10.1126/science.1254295
  • [14] Q. Shan, A. Heck, and S. Mostaghim, “Discrete collective estimation in swarm robotics with ranked voting systems,” 12 2021, pp. 1-8. [Online]. Available: https://doi.org/10.1109/SSCI50451.2021.9659868
  • [15] B. Mastej and M. Figat, “Hierarchical distributed cluster-based method for robotic swarms.” Wydawnictwo Politechnik Lodzkiej. [Online]. Available: http://hdl.handle.net/11652/4852
  • [16] D. Tarapore, J. Timmis, and A. L. Christensen, “Fault detection in a swarm of physical robots based on behavioral outlier detection,” IEEE Transactions on Robotics, vol. 35, no. 6, pp. 1516-1522, 2019. [Online]. Available: https://doi.org/10.1109/TRO.2019.2929015
  • [17] T. A. Karagüzel, A. E. Turgut, A. E. Eiben, and E. Ferrante, “Collective gradient perception with a flying robot swarm,” Swarm Intelligence, vol. 17, no. 1, pp. 117-146, Jun 2023. [Online]. Available: https://doi.org/10.1007/s11721-022-00220-1
  • [18] J. Markdahl, D. Proverbio, and J. Goncalves, “Robust synchronization of heterogeneous robot swarms on the sphere,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 5798-5803. [Online]. Available: https://doi.org/10.1109/CDC42340.2020.9304268
  • [19] N. Cambier, V. Frémont, and E. Ferrante, “Group-size regulation in self-organised aggregation through the naming game,” in International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM 2017). [Online]. Available: https://hal.science/hal-01679600
  • [20] J. Timmis, A. Ismail, J. Bjerknes, and A. Winfield, “An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems,” Biosystems, vol. 146, pp. 60-76, 2016, information Processing in Cells and Tissues. [Online]. Available: https://doi.org/10.1016/j.biosystems.2016.04.001
  • [21] J. von Neumann, Theory of Self-Reproducing Automata, A. W. Burks, Ed. Urbana, IL: University of Illinois Press, 1966, posthumously compiled from von Neumann’s lectures and notes.
  • [22] A. Abdel-Rahman, C. Cameron, B. Jenett, M. Smith, and N. Gershenfeld, “Self-replicating hierarchical modular robotic swarms,” Communications Engineering, vol. 1, no. 1, p. 35, Nov 2022. [Online]. Available: https://doi.org/10.1038/s44172-022-00034-3
  • [23] J. Alonso-Mora, S. Haegeli Lohaus, P. Leemann, R. Siegwart, and P. Beardsley, “Gesture based human - multi-robot swarm interaction and its application to an interactive display,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 5948-5953. [Online]. Available: https://doi.org/10.1109/ICRA.2015.7140033
  • [24] P. G. F. Dias, M. C. Silva, G. P. Rocha Filho, P. A. Vargas, L. P. Cota, and G. Pessin, “Swarm robotics: A perspective on the latest reviewed concepts and applications,” vol. 21, no. 6, p. 2062. [Online]. Available: https://doi.org/10.3390/s21062062
  • [25] T. Chung and R. Daniel, “Darpa offset: A vision for advanced swarm systems through agile technology development and experimentation,” Field Robotics, vol. 3, pp. 97-124, 01 2023. [Online]. Available: https://doi.org/10.55417/fr.2023003
  • [26] J. Tan, N. Melkoumian, D. Harvey, and R. Akmeliawati, “Evaluating swarm robotics for mining environments: Insights into model performance and application,” Applied Sciences, vol. 14, no. 19, 2024.
  • [27] S. Ratnayake and M. Figat, “Beacon-based swarm search and rescue.” Wydawnictwo Politechniki Łódzkiej. [Online]. Available: http://hdl.handle.net/11652/4840
  • [28] I. Lončar, A. Babić, B. Arbanas, G. Vasiljevic, T. Petrović, S. Bogdan, and N. Mišković, “A heterogeneous robotic swarm for long-term monitoring of marine environments,” Applied Sciences, vol. 9, no. 7, 2019.
  • [29] N. D. Griffiths Sànchez, P. A. Vargas, and M. S. Couceiro, “A Darwinian swarm robotics strategy applied to underwater exploration,” in 2018 IEEE Congress on Evolutionary Computation (CEC), 2018, pp. 1-6. [Online]. Available: https://doi.org/10.1109/CEC.2018.8477738
  • [30] G. Liu, L. Chen, K. Liu, and Y. Luo, “A swarm of unmanned vehicles in the shallow ocean: A survey,” Neurocomputing, vol. 531, pp. 74-86, 2023. [Online]. Available: https://doi.org/10.1016/j.neucom.2023.02.020
  • [31] Z. Xiaoning, “Analysis of military application of uav swarm technology,” in 2020 3rd International Conference on Unmanned Systems (ICUS), 2020, pp. 1200-1204. [Online]. Available: https://doi.org/10.1109/ICUS50048.2020.9274974
  • [32] S. Halder and K. Afsari, “Robots in inspection and monitoring of buildings and infrastructure: A systematic review,” Applied Sciences, vol. 13, no. 4, 2023. [Online]. Available: https://doi.org/10.3390/app13042304
  • [33] G. S. Berger, M. Teixeira, A. Cantieri, J. Lima, A. I. Pereira, A. Valente, G. G. R. d. Castro, and M. F. Pinto, “Cooperative heterogeneous robots for autonomous insects trap monitoring system in a precision agriculture scenario,” Agriculture, vol. 13, no. 2, 2023. [Online]. Available: https://doi.org/10.3390/agriculture13020239
  • [34] E. Staudinger, D. Shutin, C. Manss, A. Viseras, and S. Zhang, “Swarm technologies for future space exploration missions,” in ISAIRAS ’18: FOURTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND AUTOMATION IN SPACE, June 2018. [Online]. Available: https://elib.dlr.de/120345/
  • [35] D. St-Onge, M. Kaufmann, J. Panerati, B. Ramtoula, Y. Cao, E. B. Coffey, and G. Beltrame, “Planetary exploration with robot teams: Implementing higher autonomy with swarm intelligence,” IEEE Robotics & Automation Magazine, vol. 27, no. 2, pp. 159-168, 2020. [Online]. Available: https://doi.org/10.1109/MRA.2019.2940413
  • [36] J. Tan, N. Melkoumian, R. Akmeliawati, and D. Harvey, “Design and application of swarm robotics system using abco method for off-earth mining,” in Proceedings of the Fifth International Future Mining Conference, 2021.
  • [37] A. Vardy, “Orbital construction: Swarms of simple robots building enclosures,” in 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W), 2018, pp. 147-153. [Online]. Available: https://doi.org/10.1109/FAS-W.2018.00040
  • [38] H. Wang and M. Rubenstein, “Shape formation in homogeneous swarms using local task swapping,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 597-612, 2020. [Online]. Available: https: //doi.org/10.1109/TRO.2020.2967656
  • [39] M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future of swarm robotics,” Science Robotics, vol. 5, no. 49, 2020. [Online]. Available: https://doi.org/10.1126/scirobotics.abe4385
  • [40] R. R. Murphy, “Swarm robots in science fiction,” Science Robotics, vol. 6, no. 56, p. eabk0451, 2021.
  • [41] J. Tang, G. Liu, and Q. Pan, “A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends,” vol. 8, no. 10, pp. 1627-1643. [Online]. Available: https://doi.org/10.1109/JAS.2021.1004129
  • [42] D. Teodorovi´c, “Swarm intelligence systems for transportation engineering: Principles and applications,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 6, pp. 651-667, 2008. [Online]. Available: https://doi.org/https://doi.org/10.1016/j.trc.2008.03.002
  • [43] S. Wang, Y. Yue, S. Cai, X. Li, C. Chen, H. Zhao, and T. Li, “A comprehensive survey of the application of swarm intelligent optimization algorithm in photovoltaic energy storage systems,” Scientific Reports, vol. 14, no. 1, p. 17958, Aug 2024. [Online]. Available: https://doi.org/10.1038/s41598-024-68964-w
  • [44] C. Y. Jie, M. B. Jasser, S.-S. M. Ajibade, H. N. Chua, R. T. Wong, A. S. Rafsanjani, and A. P. A. Majeed, “A survey on swarm intelligence algorithms for optimizing path planning,” in 2025 21st IEEE International Colloquium on Signal Processing & Its Applications (CSPA), 2025, pp. 283-288. [Online]. Available: https://doi.org/10.1109/CSPA64953.2025.10933006
  • [45] M. Saleem, G. A. Di Caro, and M. Farooq, “Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions,” Information Sciences, vol. 181, no. 20, pp. 4597-4624, 2011, special Issue on Interpretable Fuzzy Systems. [Online]. Available: https://doi.org/https://doi.org/10.1016/j.ins.2010.07.005
  • [46] E. Pacini, C. Mateos, and C. G. Garino, “Distributed job scheduling based on swarm intelligence: A survey,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 252-269, 2014, 40th-year commemorative issue. [Online]. Available: https://doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.023
  • [47] Y. Qawqzeh, M. Alharbi, A. Jaradat, and K. Abdus Sattar, “A review of swarm intelligence algorithms deployment for scheduling and optimization in cloud computing environments,” PeerJ Computer Science, vol. 7, p. e696, 08 2021. [Online]. Available: https://doi.org/10.7717/peerj-cs.696
  • [48] I. Kassabalidis, M. El-Sharkawi, R. Marks, P. Arabshahi, and A. Gray, “Swarm intelligence for routing in communication networks,” in GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270), vol. 6, 2001, pp. 3613-3617 vol.6. [Online]. Available: https://doi.org/10.1109/GLOCOM.2001.966355
  • [49] “Swarm intelligence for next-generation networks: Recent advances and applications,” Journal of Network and Computer Applications, vol. 191, p. 103141, 2021. [Online]. Available: https://doi.org/10.1016/j.jnca.2021.103141
  • [50] B. Ji, Y. Wang, K. Song, C. Li, H. Wen, V. G. Menon, and S. Mumtaz, “A survey of computational intelligence for 6g: Key technologies, applications and trends,” IEEE Transactions on Industrial Informatics, vol. 17, no. 10, pp. 7145-7154, 2021. [Online]. Available: https://doi.org/10.1109/TII.2021.3052531
  • [51] L. Cao, Y. Cai, and Y. Yue, “Swarm intelligence-based performance optimization for mobile wireless sensor networks: Survey, challenges, and future directions,” vol. 7, pp. 161 524-161 553. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2951370
  • [52] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, 2008. [Online]. Available: https://doi.org/10.1016/j.comnet.2008.04.002
  • [53] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a scalable and robust communication paradigm for sensor networks,” in Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’00. New York, NY, USA: Association for Computing Machinery, 2000, p. 56-67. [Online]. Available: https://doi.org/10.1145/345910.345920
  • [54] R. Haghighi and C. Cheah, “Multi-group coordination control for robot swarms,” Automatica, vol. 48, no. 10, pp. 2526-2534, 2012. [Online]. Available: https://doi.org/10.1016/j.automatica.2012.03.028
  • [55] I. Khoufi, P. Minet, A. Laouiti, and S. Mahfoudh, “Survey of deployment algorithms in wireless sensor networks: Coverage and connectivity issues and challenges,” International Journal of Autonomous and Adaptive Communications Systems, vol. 10, p. 341, 01 2017. [Online]. Available: https://doi.org/10.1504/IJAACS.2017.088774
  • [56] N. F. Saraiva de Sousa, D. A. Lachos Perez, R. V. Rosa, M. A. Santos, and C. Esteve Rothenberg, “Network service orchestration: A survey,” Computer Communications, vol. 142-143, pp. 69-94, 2019. [Online]. Available: https://doi.org/10.1016/j.comcom.2019.04.008
  • [57] B. Mastej, “Exploiting of mobile compute capabilities of mobile networkterminals,” 2024, promotor: dr inż. Sławomir Kukliński.
  • [58] S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of swarm intelligence,” Swarm Intelligence, vol. 1, no. 1, pp. 3-31, Jun 2007. [Online]. Available: https://doi.org/10.1007/s11721-007-0004-y
  • [59] J. Krause, G. D. Ruxton, and S. Krause, “Swarm intelligence in animals and humans,” Trends in Ecology & Evolution, vol. 25, no. 1, pp. 28-34, Jan 2010. [Online]. Available: https://doi.org/10.1016/j.tree.2009.06.016
  • [60] L. O’Bryan, M. Beier, and E. Salas, “How approaches to animal swarm intelligence can improve the study of collective intelligence in human teams,” Journal of Intelligence, vol. 8, no. 1, 2020. [Online]. Available: HTTPS://DOI.ORG/10.3390/jintelligence8010009
  • [61] V. Trianni, E. Tuci, K. M. Passino, and J. A. R. Marshall, “Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives,” Swarm Intelligence, vol. 5, no. 1, pp. 3-18, Mar 2011. [Online]. Available: https://doi.org/10.1007/s11721-010-0050-8582
  • [62] E. Sahin and A. Winfield, “Special issue on swarm robotics,” Swarm Intelligence, vol. 2, pp. 69-72, 12 2008. [Online]. Available: https://doi.org/10.1007/s11721-008-0020-6
  • [63] J. Boskovic, R. Prasanth, and R. Mehra, “A multilayer control architecture for unmanned aerial vehicles,” in Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), vol. 3, 2002, pp. 1825-1830 vol.3. [Online]. Available: https://doi.org/10.1109/ACC.2002.1023832
  • [64] H. Hamann, Swarm Robotics: A Formal Approach, 01 2018. [Online]. Available: https://doi.org/10.1007/978-3-319-74528-2
  • [65] Y. Jia and L. Wang, “Leader-follower flocking of multiple robotic fish,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3, pp. 1372-1383, 2015. [Online]. Available: https://doi.org/10.1109/TMECH.2014.2337375
  • [66] N. Correll and A. Martinoli, “Modeling and designing self-organized aggregation in a swarm of miniature robots,” The International Journal of Robotics Research, vol. 30, no. 5, pp. 615-626, 2011. [Online]. Available: https://doi.org/10.1177/0278364911403017
  • [67] R. Beckers, O. Holland, and J.-L. Deneubourg, “Fom local actions to global tasks: Stigmergy and collective robotics,” Proceedings of the Workshop on Artificial Life, vol. 4, 01 1994. [Online]. Available: https://doi.org/10.1007/978-94-010-0870-9_63
  • [68] R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Theraulaz, “Self-organized aggregation in cockroaches,” Animal Behaviour, vol. 69, no. 1, pp. 169-180, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0003347204002428
  • [69] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Phys. Rev. Lett., vol. 75, pp. 1226-1229, Aug 1995. [Online]. Available: https://doi.org/10.1103/PhysRevLett.75.1226
  • [70] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, 1985, pp. 500-505. [Online]. Available: https://doi.org/10.1109/ROBOT.1985.1087247
  • [71] M. BRAMBILLA, “Formal methods for the design and analysis of robot swarms,” PhD thesis, Université Libre de Bruxelles & Ecole Polytechnique de Bruxelles, 2014, available at https://iridia.ulb.ac.be/~mdorigo/HomePageDorigo/thesis/phd/BrambillaPhDThesis.pdf.
  • [72] A. Reina, G. Valentini, C. Fernandez-Oto, M. Dorigo, and V. Trianni, “A design pattern for decentralised decision making,” PloS one, vol. 10, p. e0140950, 10 2015. [Online]. Available: https://doi.org/10.1371/journal.pone.0140950
  • [73] G. Francesca and M. Birattari, “Automatic Design of Robot Swarms: Achievements and Challenges,” vol. 3. [Online]. Available: https://doi.org/10.3389/frobt.2016.00029
  • [74] A. Ligot, A. Cotorruelo, E. Garone, and M. Birattari, “Toward an empirical practice in offline fully automatic design of robot swarms,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 6, pp. 1236-1245, 2022. [Online]. Available: https://doi.org/10.1109/TEVC.2022.3144848
  • [75] S. Lem, The Invincible. The MIT Press, 2020.
  • [76] M.-A. Blais and M. A. Akhloufi, “Reinforcement learning for swarm robotics: An overview of applications, algorithms and simulators,” Cognitive Robotics, vol. 3, pp. 226-256, 2023. [Online]. Available: https://doi.org/https://doi.org/10.1016/j.cogr.2023.07.004
  • [77] F. Bahrpeyma and D. Reichelt, “A review of the applications of multi-agent reinforcement learning in smart factories,” vol. 9. [Online]. Available: https://doi.org/10.3389/frobt.2022.1027340
  • [78] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942-1948 vol.4. [Online]. Available: https://doi.org/10.1109/ICNN.1995.488968
  • [79] M. S. Talamali, A. Saha, J. A. R. Marshall, and A. Reina, “When less is more: Robot swarms adapt better to changes with constrained communication,” Science Robotics, vol. 6, no. 56, 2021. [Online]. Available: https://doi.org/10.1126/scirobotics.abf1416
  • [80] C. Blum and R. Groß, Swarm Intelligence in Optimization and Robotics. Springer Berlin Heidelberg, 2015, pp. 1291-1309. [Online]. Available: https://doi.org/10.1007/978-3-662-43505-2_66
  • [81] M. Dorigo, “Optimization, learning and natural algorithms,” PhD thesis, Politecnico di Milano, 1992.
  • [82] A. Chakraborty and A. K. Kar, Swarm Intelligence: A Review of Algorithms. Springer International Publishing, 2017, pp. 475-494. [Online]. Available: https://doi.org/10.1007/978-3-319-50920-4_19
  • [83] T. Stützle and M. Dorigo, Ant Colony Optimization. The MIT Press, 01 2004. [Online]. Available: https://doi.org/10.7551/mitpress/1290.001.0001
  • [84] H. Hamann, Space-Time Continuous Models of Swarm Robotic Systems, 01 2010, vol. 9. [Online]. Available: https://doi.org/10.1007/978-3-642-13377-0
  • [85] K. Lerman, A. Galstyan, A. Martinoli, and A. Ijspeert, “A macroscopic analytical model of collaboration in distributed robotic systems,” Artificial life, vol. 7, pp. 375-93, 02 2001. [Online]. Available: https://doi.org/10.1162/106454601317297013
  • [86] M. Mannone, V. Seidita, and A. Chella, “Modeling and designing a robotic swarm: A quantum computing approach,” Swarm and Evolutionary Computation, vol. 79, p. 101297, 2023. [Online]. Available: https://doi.org/10.1016/j.swevo.2023.101297
  • [87] V. G. Ivancevic, “Entangled swarm intelligence: Quantum computation for swarm robotics.” Mathematics in Engineering, Science & Aerospace (MESA), vol. 7, no. 3, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42cd0939-5ae5-460f-a6eb-bb0f4cfcec57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.