PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation on Free Convective Heat Transfer Performance of Oxide Nanofluids Along a Vertical Cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The multi criterion decision making (MCDM) method and experimental investigation on free convective heat transfer performance of oxide-based water nanofluids along a vertical cylinder are the two methods used to compare the performance in this paper. Al2O3, CuO, TiO2, SiO2, Fe3O4, and ZnO were the metal oxide nanoparticles used in the study to make water-based metal oxide nanofluids with volume fractions ranging from 0% to 1%. Two step method was used to create nanofluids. Thermo-physical properties like density, specific heat, viscosity, and thermal conductivity were measured after the various nanofluids were synthesized. Then, the performance of each nanofluid was evaluated based on various attributes using the weighted sum model (WSM) method, and the ranking of nanofluids was given. To begin, water served as the medium for free convection heat transfer experiments to validate the experimental setup. Free convection heat transfer experiments were carried out using metal oxide-based water nanofluids as mediums at volume fractions ranging from 0% to 1% for various heat inputs in the range of 30 W and 50 W. The heat transfer coefficient augments with percentage volume concentration up to 0.1 % for all types of nanofluids and then decreases until it reaches 0.6% volume fraction. Al2O3-water nanofluid performs better than other metal oxide nanofluids in both WSM and experimental methods.
Twórcy
autor
  • Department of Mechanical Engineering, GMR Institute of Technology, India
  • Department of Mechanical Engineering, RGUKT, Nuzvid, India
autor
  • Department of Mechanical Engineering, RGUKT, Nuzvid, India
  • Department of Mechanical Engineering, ANU, Guntur, India
Bibliografia
  • 1. Ghalambaz, M., Sabour, M., Pop, I., Wen, D. 2019. Free convection heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects. International Journal of Numerical Methods for Heat & Fluid Flow, 29(11), 4349–4376.
  • 2. Anwar, T., Kumam, P., Watthayu, W. 2020. An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption. Scientific Reports, 10, 17830, 1–19.
  • 3. Zhang, L., Hu, Y., Li, M. 2021, Numerical Study of Natural Convection Heat Transfer in a Porous Annulus Filled with a Cu-Nanofluid. Nanomaterials, 11(4), 990, 1–24.
  • 4. Wisam, K., Hussam, Khanafer, K., Hayder, J.S., Gregory, J.S. 2019. Natural convection heat transfer utilizing nanofluid in a cavity with a periodic sidewall temperature in the presence of a magnetic field, International Communications in Heat and Mass Transfer, 104, 127–135.
  • 5. Nassima, S., Mohamed, K., Ismail, T., Mohamed, R.S. 2021. Natural convection flow and heat transfer of nanofluid in porous media for different shapes of nanoparticles using analytical and numerical methods, Special Topics and Reviews on Porous Media, 12(6), 1–17.
  • 6. Hamza, M., Brahim, B., Tahar, T. 2019. Improvement of Free Convection Heat Transfer in a Concentric Cylindrical Annulus Heat Exchanger Using Nanofluid, MMEP, 6(4), 566–574.
  • 7. Debashis, D., Dibyanshu, S.S. 2021. Experimental study in a natural convection cavity using nanofluid, Materials Today Proceedings, 41(2), 403–412.
  • 8. Debashis, D., Abhilash, K., Sukanta, K.D. 2023. The study of nanofluid properties, nanoparticle characterization, flow visualization, and validation of natural convection cavity setup, Materials Today Proceedings, 74(4), 767–773.
  • 9. Suhaib, U.I., Rajasekhar, P., Marneni, N. 2019. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid, Thermal Analysis and Calorimetry, 135, 1197–1209.
  • 10. Shafirpur, M., Solomon, O.G., Kyoung-Yeoll, Lee., Hadi, G., Josua, P.M. 2021. Experimental Investigation into Natural Convection of Zinc Oxide/Water Nanofluids in a Square Cavity, Heat Transfer Engineering, 42(19), 1675–1687.
  • 11. Sawicka, D., Janusz, T., Slawomir, S., 2021. Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids, Energies, 14, 2909, 1–14.
  • 12. Abderrahmane, B., Nacim, A., Fabian, D.Q. 2020. Experimental study of free convective heat transfer around a spherical electronic component cooled by means of porous media saturated by nanofluid, Heat and Mass Transfer, 56, 3085–3092.
  • 13. Maryam, T., Nasrin, E. 2019. Experimental investigation of natural convection heat transfer of SiO2/water nanofluid inside inclined enclosure, Journal of Thermal Analysis and Calorimetry, 139, 1–10.
  • 14. Ravi Babu, S., Ravi kumar, N.V.A., Ramesh Babu. P. 2021. Effect of moisture and sonication time on dielectric strength and heat transfer performance of transformer oil based Al2O3 nanofluid, International Journal of Advanced Technology and Engineering Exploration, 8(82), 1222–1233.
  • 15.Rao, R.V. 2007. Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods. Springer, London.
  • 16.Ravi Babu, S., Krishna Varma, K.P.V., Ramesh Babu, P. 2021. Nanofluid selection for an automobile radiator using weighted sum model technique, 3rd International Conference on Manufacturing, Material Science & Engineering, 45–51.
  • 17. Dharmalingam, R., Ranjith, R., Surendranadh, S., Murugapoopathi, S., Ramachandran, T. 2023. Optimization of flow and fluid properties of nanofluids to enhance the performance of solar collector using MCDM technique, Proc. of IMechE, Part E: Journal of Process Mechanical Engineering, 1(1), 1–18.
  • 18. Mohd, S., Syed, M.Y., Ifran, A.B, Ali, E.A., Mohammad, A., Zahid, A.K. 2020. Multi response optimization of nanofluid based I.C engine cooling system using Fuzzy PIV method, Processes, 8(1), 30–38.
  • 19. Dubey, V., Anuj, K.S., Prameet, V., Danil, Y.P., Khaled, G., Daniel, C. 2021. Study of a multicriterion decision making approach to the MQL turning of AISI 304 steel using hybrid nanocutting fluid, materials, 14(23), 1–14.
  • 20. Williams, W., Buongiorno, J., Hu, L.W. 2008. Experimental investigation of turbulent convective heat transfer and pressure loss of Al2O3/water and ZnO/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer, 130(4), 1–8.
  • 21. Maxwell, J.C. 1954. Electricity and magnetism. Dover, New York.
  • 22. Das, S.K., Choi, S.U.S., Patel, H.E. 2006. Heat transfer in nanofluids: a review, Heat Transfer Engineering, 27(10), 3–19.
  • 23. Orozco, D., Del, C.L.F. 2005. Hydrodynamic behavior of suspension of polar particles, Encyclopedia Surface Colloid Science, 4, 2375–2396.
  • 24. Einstein A. 1956. Investigations on the theory of the Brownian Movement, Dover, New York.
  • 25. Nguyen, C.T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., Mintsa, H.A. 2008. Viscosity data for Al2O3-water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47(2), 103–111.
  • 26. Maiga, S.E., Palm, S.J, Nguyen, C.T, Roy, G., Galanis, N., 2005. Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow, 26(4), 530–546.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42caaada-f3df-40c0-b401-7e4e9c9c0c38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.