Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The efficacy of modal curvature approach for damage localization is discussed in the paper in the context of input data. Three modal identification methods, i.e., Eigensystem Realization Algorithm (ERA), Natural Excitation Technique with ERA (NExT-ERA) and Covariance Driven Stochastic Subspace Identification (SSI-Cov), and four methods of determining baseline data, i.e., real measurement of the undamaged state, analytical function, Finite Element (FE) model and approximation of current experimental mode shape, are considered. Practical conclusions are formulated based on analysis of two cases. The first is a laboratory beam with a notch and the second is a stone-masonry historic lighthouse with modern restoration in its upper part. The analysis shows that NExT-ERA and SSI-Cov in combination with approximation of current mode shape provide high efficacy in damage localization alongside relatively straightforward determination of baseline data. It proves that the construction of advanced FE models of a structure can be replaced with a much simpler method of baseline data acquisition. Furthermore, the research shows the structural mode shapes identified with ERA may not always indicate the presence of damage.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e152217
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Department of Structural Mechanics, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
autor
- Department of Engineering Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
autor
- Division of Differential Equations and Applications of Mathematics, Institute of Applied Mathematics Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
autor
- Department of Structural Mechanics, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
Bibliografia
- [1] C.P. Fritzen, “Vibration-based structural health monitoring – concepts and applications,” Key Eng. Mater., vol. 293–294, p. 3–20, 2005.
- [2] S.S. Saidin, S.A. Kudus, A. Jamadin, M.A. Anuar, N.M. Amin, A.B.Z. Ya, and K. Sugiura, “Vibration-based approach for structural health monitoring of ultra-high-performance concrete bridge,” Case Stud. Constr. Mater., vol. 18, p. e01752, 2023, doi: 10.1016/j.cscm.2022.e01752.
- [3] J. Zhang, C.-X. Qu, T.-H. Yi, H.-N. Li, Y.-F. Wang, and X.-D. Mei, “Detecting deck damage in concrete box girder bridges using mode shapes constructed from a moving vehicle,” Eng. Struct., vol. 305, p. 117726, 2024, doi: 10.1016/j.engstruct.2024.117726.
- [4] S. Carbonari, F. Dezi, D. Arezzo, and F. Gara, “A methodology for the identification of physical parameters of soil-foundation-bridge pier systems from identified state-space models,” Eng. Struct., vol. 255, p. 113944, 2022, doi: 10.1016/j.engstruct.2022.113944.
- [5] J.M.W. Brownjohn, A. Raby, J. Bassitt, A. Antonini, E. Hudson, and P. Dobson, “Experimental modal analysis of british rock lighthouses,” Mar. Struct., vol. 62, pp. 1–22, 2018, doi: 10.1016/j.marstruc.2018.07.001.
- [6] R.M. Azzara, M. Girardi, V. Iafolla, D.M. Lucchesi, C. Padovani, and D. Pellegrini, “Ambient vibrations of age-old masonry towers: Results of long-term dynamic monitoring in the historic centre of lucca,” Int. J. Archit. Herit., vol. 15, no. 1, pp. 5–21, 2021.
- [7] A.R. Carmelo Gentile and A. Saisi, “Continuous dynamic monitoring to enhance the knowledge of a historic bell-tower,” Int. J. Archit. Herit., vol. 13, no. 7, pp. 992–1004, 2019.
- [8] K. Wilde and M. Rucka, “Ultrasound monitoring for evaluation of damage in reinforced concrete,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 65–75, 2015, doi: 10.1515/bpasts-2015-0008.
- [9] A. Knitter-Piątkowska, O. Kawa, and M.J. Guminiak, “Damage localization in truss girders by an application of the discrete wavelet transform,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. e144581, 2023, doi: 10.24425/bpasts.2023.144581.
- [10] L. Hadjileontiadis, E. Douka, and A. Trochidis, “Fractal dimension analysis for crack identification in beam structures,” Mech. Syst. Signal Process., vol. 19, no. 3, pp. 659–674, 2005, doi: 10.1016/j.ymssp.2004.03.005.
- [11] A. Pandey, M. Biswas, and M. Samman, “Damage detection from changes in curvature mode shapes,” J. Sound Vibr., vol. 145, no. 2, pp. 321–332, 1991, doi: 10.1016/0022-460X(91)90595-B.
- [12] M. Abdel Wahab and G. De Roeck, “Damage detection in bridges using modal curvatures: Application to a real damage scenario,” J. Sound Vibr., vol. 226, no. 2, pp. 217–235, 1999, doi: 10.1006/jsvi.1999.2295.
- [13] R. Taghipour, M.R. Nashta, M. Bozorgnasab, and H. Mirgolbabaei, “A new index for damage identification in beam structures based on modal parameters,” Arch. Mech. Eng., vol. 68, no. 4, pp. 375–394, 2021, doi: 10.24425/ame.2021.138397.
- [14] L. Wang, R. Chen, L. Dai, K. Huang, J. Zhang, and C. Tang, “A detection method integrating modal deflection curvature difference and natural frequency for structural stiffness degradation,” Eng. Fail. Anal., vol. 141, p. 106637, 2022, doi: 10.1016/j.engfailanal.2022.106637.
- [15] Y. Jiang, J. Sun, Q. Lin, and J. Xiang, “A two-stage method to detect damages in aluminum plates using curvature modal shape subtraction indicator and particle swarm optimization,” Thin-Walled Struct., vol. 185, p. 110560, 2023, doi: 10.1016/j.tws.2023.110560.
- [16] A. Anwar and A. Abd Elwaly, “Modal displacement vs curvature functions as damage identifier for masonry structures,” Alex. Eng. J., vol. 68, pp. 527–538, 2023, doi: 10.1016/j.aej.2023.01.042.
- [17] D.H. Nguyen, Q.B. Nguyen, T. Bui-Tien, G. De Roeck, and M. Abdel Wahab, “Damage detection in girder bridges using modal curvatures gapped smoothing method and convolutional neural network: Application to bo nghi bridge,” Theor. Appl. Fract. Mech., vol. 109, p. 102728, 2020, doi: 10.1016/j.tafmec.2020.102728.
- [18] B.L. Ho and R.E. Kalman, “Effective construction of linear, state-variable models from input/output functions,” Regelungstechnik, vol. 14, no. 12, 1966.
- [19] J.-N. Juang and R. Pappa, “An eigensystem realization algorithm for modal parameter identification and model reduction,” J. Guid. Control Dyn., vol. 8, pp. 620–627, 1985.
- [20] J.-N. Juang, Applied System Identification. Englewood Clifs, New York, USA: Prentice-Hall PTR, 1994.
- [21] M. Szafrański, “A dynamic vehicle-bridge model based on the modal identification results of an existing en57 train and bridge spans with non-ballasted tracks,” Mech. Syst. Signal Process., vol. 146, p. 107039, 2021, doi: 10.1016/j.ymssp.2020.10703.
- [22] A. Tomaszewska and M. Szafrański, “Study on applicability of two modal identification techniques in irrelevant cases,” Arch. Civ. Mech. Eng., vol. 20, no. 13, p. 13, 2020, doi: 10.1007/s43452-020-0014-8.
- [23] A. Tomaszewska, M. Drozdowska, and M. Szafrański, “Material parameters identification of historic lighthouse based on operational modal analysis,” Materials, vol. 13, no. 17, p. 3814, 2020, doi: 10.3390/ma13173814.
- [24] G.H. James III, T.G. Carne, and J.P. Lauffer, “The natural excitation technique (next) for modal parameter extraction from operating wind turbines,” NASA STI/Recon Technical Report N, vol. 93, p. 28603, 1993.
- [25] P. van Overschee and B. De Moor, “Subspace algorithms for the stochastic identification problem,” Automatica, vol. 29, pp. 649–660, 1993, doi: 10.1016/0005-1098(93)90061-W.
- [26] W.J. Bottega, Engineering vibrations. CRC Press, 2014.
- [27] C.P. Ratcliffe and W.J. Bagaria, “Vibration technique for locating delamination in a composite beam,” AIAA J., vol. 36, no. 6, pp. 1074–1077, 1998.
- [28] S. Rucevskis, R. Janeliukstis, P. Akishin, and A. Chate, “Mode shape-based damage detection in plate structure without baseline data,” Struct. Control Health Monit., vol. 23, no. 9, pp. 1180–1193, 2016.
- [29] “Lighthouse gdańsk nowy port.” [Online]. Available: http://www.latarnia.gda.pl/english/
- [30] A. Anjum, M. Hrairi, A. Aabid, N. Yatim, and M. Ali, “Damage detection in concrete structures with impedance data and machine learning,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, p. e149178, 2024, doi: 10.24425/bpasts.2024.149178.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42c4563f-8427-4c32-97ae-ae0f97b64e5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.