PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural radionuclides in rocks and their association with the mineralogy of rocks in Dakshina Kannada region of southern India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The radioactivity levels of natural radionuclides 226Ra, 232Th, and 40K in the rocks of Dakshina Kannada region of southern India were measured by NaI (Tl) gamma-ray spectrometer. The specific activities of 226Ra, 232Th, and 40K ranged from 4.2±0.4 to 74.5±1.7 Bq kg−1, 14.5±0.7 to 83.5±1.6 Bq kg−1, and 172±3 to 964±7 Bq kg−1 with the mean of 25.1±1.0 Bq kg−1, 36.1±1.0 Bq kg−1, and 502±5.0 Bq kg−1, respectively. The normality of the frequency distribution curves of 226Ra, 232Th, and 40K was tested using the Kolmogorov–Smirnov test. The radiological hazard indices were computed from the measured activity concentration of natural radionuclides in rocks and these were found to be within acceptable levels. To investigate the sources of radioactivity, the minerals involved in the rocks were detected using XRD and FTIR. The mineralogical studies reveal that the principal sources of gamma radiation in the study area are 232Th-rich phosphates and 40K-bearing feldspars.
Czasopismo
Rocznik
Strony
2149--2160
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Department of Physics, Mangalore University, Mangalagangothri 574 199, India
  • Department of Physics, Beary’s Institute of Technology Mangalore, Mangalore 574 153, India
  • Department of Physics, Mangalore University, Mangalagangothri 574 199, India
  • Department of Physics, Mangalore University, Mangalagangothri 574 199, India
Bibliografia
  • 1. Abuelnaga HSO, Harbi HM, Alqahtani FA, Bamousa AOM, Aboud E (2021) Radiological environmental studies of Al Aziziah area and vicinity, Al Madinah Al Monawarah. Saudi Arab Environ Monit Assess 193(2):87. https://doi.org/10.1007/s10661-021-08883-9
  • 2. Al Saleh FS, Al-berzan B (2007) Measurements of natural radioactivity in some kinds of marble and granite used in Riyadh Region. J Nucl Radiat Phys 2:25–36
  • 3. Al-Hamarneh IF (2018) Hazard indices and annual effective dose due to terrestrial radioactivity in the urban areas in the south of Jordan. J Radioanal Nucl Chem 316(1):139–151. https://doi.org/10.1007/s10967-018-5723-6
  • 4. Ali MM, Zhao H, Li Z, Ahmed OMH, Alfasatleh I, Maglas NN (2020) The impact of the oil and gas industry on NORMs of groundwater and their annual effective dose in Ma’rib, central Yemen. Acta Geophys 68(5):1421–1431. https://doi.org/10.1007/s11600-020-00482-5
  • 5. Al-khawlany AH, Khan AR, Pathan JM, Fatema I (2020) Assessment of potential radiological risks due to natural gamma radiations in some selected rock samples using y-ray spectrometry. J Phys Conf Ser 1644(1):12004. https://doi.org/10.1088/1742-6596/1644/1/012004
  • 6. Allan DR, Angel RJ (1997) A high-pressure structural study of microcline (KAlSi3O8) to 7 GPa. Eur J Mineral 9:263–276
  • 7. Birami FA, Moore F, Faghihi R, Keshavarzi B (2019) Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high-level natural radiation area, Northern Iran. J Radioanal Nucl Chem 322(3):2091–2103. https://doi.org/10.1007/s10967-019-06912-z
  • 8. Commission E, (EC) (1999) Report on radiological protection principle concerning the natural radioactivity of building materials. Directorate—general environment, nuclear safety and civil protection. Radiat Protect 112:1–16
  • 9. De Villiers JP (1971) Crystal structures of aragonite, strontianite, and witherite. Am Mineral J Earth Planet Mater 56(5–6):758–767
  • 10. Downs RT, Hazen RM, Finger LW (1994) The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering. Am Miner 79(11–12):1042–1052
  • 11. EC (European Commission) (1999) Radiation protection radiological protection principles concerning the natural radioactivity of building materials. Eur Commis 112:1–16
  • 12. GSI (Geological Survey of India) (1994) District resources map of Dakshina Kannada District, Karnataka
  • 13. Hameed PS, Pillai GS, Satheeshkumar G, Mathiyarasu R (2014) Measurement of gamma radiation from rocks used as building material in Tiruchirappalli district, Tamil Nadu, India. J Radioanal Nucl Chem 300(3):1081–1088. https://doi.org/10.1007/s10967-014-3033-1
  • 14. ICRP (1991) Recommendations of the international commission on radiological protection publication no 60. 21:1–3
  • 15. Idriss H, Salih I, Alaamer AS, Al-Rajhi MA, Osman A, Adreani TE et al (2018) Health risk profile for terrestrial radionuclides in soil around artisanal gold mining area at Alsopag, Sudan. Acta Geophys 66(4):673–681. https://doi.org/10.1007/s11600-018-0166-6
  • 16. Idriss H, Salih I, Abdelbagi H, Higazi A, Ali NI (2019) Distribution of natural radioactivity around mechanized and non-mechanized mining regions. Acta Geophys 67(4):1139–1147. https://doi.org/10.1007/s11600-019-00311-4
  • 17. Jagadeesha BG, Narayana Y (2018) Natural radionuclide concentration in Hassan district of South India. Radiat Protect Environ 41(1):37–41. https://doi.org/10.4103/rpe.RPE_13_18
  • 18. Jeelani Gh, Hassan W, Saleem M, Sahu SK, Gauri GP, Suhail AL (2021) Gamma dose monitoring to assess the excess lifetime cancer risk in western Himalaya. J Radioanal Nucl Chem 328(2):245–258. https://doi.org/10.1007/s10967-021-07647-6
  • 19. Kaliprasad CS, Vinutha PR, Narayana Y (2018) Studies on distribution of radionuclides and behavior of clay minerals in the soils of river environs. J Radioanal Nucl Chem 316:609–617. https://doi.org/10.1007/s10967-018-5825-1
  • 20. Kavasara M, Vinutha PR, Kaliprasad CS, Narayana Y (2021) Studies on the dependence of natural radioactivity on clay minerals of soils in Davanagere district of Karnataka India. J Radioanal Nucl Chem 361(1):1461–1471
  • 21. Kumar P, Sandeep KVS, Kote A, Dharmaprakash SM (2021) Non-polar a-plane oriented ZnO: Al thin films for optoelectronic applications. Phys B Conden Matter 606:412721. https://doi.org/10.1016/j.physb.2020.412721
  • 22. Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Miner 65(9–10):920–930
  • 23. Manjunatha S, Jayasheelan A, Venkataramanaiah P (2013) Study of distribution of 226Ra 232Th and 40K in different rock formations and their dose estimation in and around Chickmagalur, India. Int J Radiat Res 11(3):183–187
  • 24. Maslen EN, Streltsov VA, Streltsova NR, Ishizawa NJ (1994) Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Crystallogr B 50(4):435–441
  • 25. Nadira Mahamood K, Kaliprasad CS, Narayana Y, Prakash V (2019) Assessment of natural radionuclide enrichment and radiation hazard from building materials in Kannur District, Kerala. J Radioanal Nucl Chem 322(1):105–113. https://doi.org/10.1007/s10967-019-06519-4
  • 26. NEA-OECD (1979) Exposure to radiation from natural radioactivity in building materials. Reports by NEA Group of Experts of the Nuclear Energy Agency, Organisation for Economic Cooperation and Development, Paris, France
  • 27. Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Miner 80(1–2):21–26
  • 28. Niranjan RS, Ningappa C, Yashaswini T (2018) Studies on radionuclides around Hemavathi river basin of Karnataka, India. J Radioanal Nucl Chem 315(3):603–611. https://doi.org/10.1007/s10967-018-5706-7
  • 29. Osmanlioglu AE (2006) Natural radioactivity and evaluation of effective dose equivalent of granites in Turkey. Radiat Protect Dosim 121(3):325–329. https://doi.org/10.1093/rpd/ncl028
  • 30. Papadopoulos A, Christofdes G, Koroneos A, Papadopoulou L, Papastefanou C, Stoulos S (2013) Natural radioactivity and radiation index of the major plutonic bodies in Greece. J Environ Radioact 124:227–238. https://doi.org/10.1016/j.jenvrad.2013.06.002
  • 31. Patra AK, Sudhakar J, Ravi PM, James JP, Hegde AG, Joshi ML (2006) Natural radioactivity distribution in geological matrices around Kaiga environment. J Radioanal Nucl Chem 270(2):307–312. https://doi.org/10.1007/s10967-006-0349-5
  • 32. Prakash MM, Kaliprasad CS, Narayana Y (2017) Studies on natural radioactivity in rocks of Coorg district Karnataka state India. J Radiat Res Appl Sci 10(2):128–134. https://doi.org/10.1016/j.jrras.2017.02.003
  • 33. Prakash MM, Kaliprasad CS, Narayana Y (2019) Distribution of 210Po and 210Pb radionuclides and their dependence on physicochemical parameters of soil in Madikeri taluk, Coorg district, Karnataka, India. J Radioanal Nucl Chem 321(3):1081–1091. https://doi.org/10.1007/s10967-019-06680-w
  • 34. Sandesh A, Vinutha PR, Kaliprasad CS, Narayana Y (2021) Evaluation of radiological hazards due to natural radionuclide in rocks and the dependence of radioactivity on the mineralogy of rocks in Udupi district on the southwest coast of India. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08114-y
  • 35. Sankaran Pillai G, Shahul Hameed P, Mazhar Nazeeb Khan S (2016) Natural radioactivity levels in the soils and human risk assessment in Tiruchirappalli district (Tamil Nadu, India). J Radioanal Nucl Chem 307(2):1265–1277
  • 36. Sannappa J, Ningappa C, Narasimha KN (2010) Natural radioactivity levels in granite regions of Karnataka State. Indian J Pure Appl Phys 48(11):817–819
  • 37. Shaw G (2007) Radioactivity in the terrestrial environment. Elsevier, London
  • 38. Tufail M, Iqbal M, Mirza SM (2000) Radiation doses due to the natural radioactivity in Pakistan marble. Radioprotection 35(3):299–310. https://doi.org/10.1051/radiopro:2000110
  • 39. Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ Radioact 77(3):325–338. https://doi.org/10.1016/j.jenvrad.2004.03.014
  • 40. Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiat Meas 37(3):221–229. https://doi.org/10.1016/S1350-4487(03)00028-3
  • 41. U.S. Environmental Protection Agency (2019) Radiation protection: radionuclide basics: thorium. U.S. Environmental Protection Agency, Washington, DC
  • 42. United Nations Scientific Committee on the Effects of Atomic Radiation (1993) Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1993 Report: Report to the General Assembly, with Scientific Annexes. United Nations
  • 43. UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation, sources effects and risks of ionizing radiation. Report to the General Assembly. United Nations Publication, New York
  • 44. UNSCEAR-Annex B (2008) Exposures of the public and workers from various sources of radiation. In: Sources and effects of ionizing radiation, pp 223–463
  • 45. Venunathan N, Kaliprasad CS, Narayana Y (2016) Natural radioactivity in sediments and riverbank soil of Kallada river of Kerala, South India and Associated radiological risk. Radiat Prot Dosimetry 171(2):271–276. https://doi.org/10.1093/rpd/ncw073
  • 46. Vineethkumar V, Akhil R, Shimod KP, Prakash V (2020) Geospatial analysis of the source of monazite deposits and the dynamics of natural radionuclides in the selected coastal environs of Kerala southwest coast of India. J Radioanal Nucl Chem 326(2):983–996. https://doi.org/10.1007/s10967-020-07418-9
  • 47. Vineethkumar V, Akhil R, Shimod KP, Prakash V (2021) Sources of monazite patches and dynamics of radionuclides concentration in the high background radiation areas of Kollam District, Kerala. J Radioanal Nucl Chem 327(1):189–198. https://doi.org/10.1007/s10967-020-07520-y
  • 48. Yadav AK, Sahoo SK, Lenka P, Kumar AV, Tripathi RM (2020) Assessment of radionuclide concentration and radiation dose in rock in Singrauli Coalfield, India. J HazardToxic Radioact Waste 24(1):04019035. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000458
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42bb8029-f426-4e94-a56b-417fee0d974c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.