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Abstract: In the article the nonstationary thermal problem of friction for two semi-spaces with taking into account their imperfect thermal 
contact and thermosensitivity of materials (simple nonlinearity), has been considered. The linearization of this problem has been carried 
out using Kirchhoff transformation, and next using the Laplace integral transform. The analytical solution to the problem in the case of con-
stant speed sliding, has been obtained. On the basis of the obtained solutions and using Duhamel's formula, the analytical solution to the 
problem for sliding with constant deceleration, has been obtained, too. The results of numerical analysis are presented for two friction 
pairs.  
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1. INTRODUCTION 

The review of analytical and numerical methods to solve the 
one-dimensional heat problems of friction, has been presented in 
the article by Yevtushenko and Kuciej (2012). It has been estab-
lished, that there are practically no solutions to contact problem 
involving frictional heating, which would take into account the 
dependence of the thermal materials properties on temperature. 
In articles by Abdel-Aal (1997) and Abdel-Aal and Smith (1998) 
the solutions to heat problems of friction in case of separate heat-
ing of the two bodies have been obtained. 

The aim of this work is to obtain a solution of the contact heat 
problem with friction for two thermosensitive semi-spaces, which 
relatively slide with constant speed. It is assumed that materials 
properties of the bodies have a simple nonlinearity, i.e. the coeffi-
cients of thermal conductivity and specific heat are dependent on 
temperature and their ratio – the thermal diffusivity – is constant 
(Kushnir and Popovych, 2011). For many friction materials de-
pendence of thermal properties on temperature is linear 
(Gundlach, 1983; Abdel-Aal, 1997; Abdel-Aal and Smith, 1998; 
Sok, 2006): 

)()( 0 lll,ll TKKTK  , )()( 0, lllll TccTc            (1) 

where: 

)(1)( 0TTTK llll  , )()( llll TKTc   , 2,1l             (2) 

Here and further, all values referring to the semi-spaces will 
have subscripts 1 and 2, respectively. 

2. STATEMENT OF THE PROBLEM 

The problem of contact interaction of two bodies (semi-
spaces) with different thermal-physical properties is considered. 

It is supposed, that the constant compressive pressure    in 

direction of z-axis of the Cartesian system of coordinates Oxyz are 
applied to the infinities in semi-spaces (Fig. 1). In the initial time 
moment     the semi-spaces start to slide with a constant 

speed    in the positive direction of the  -axis. Due to friction the 

heat is generated on a contact plane    . The sum 
of intensities of frictional heat fluxes directed into each semi-

spaces is equal to the specific power of friction           
(Ling, 1973). Because of the thermal resistance between surfaces 
of the bodies, the heat transfer with a constant coefficient 

of thermal conductivity of contact   takes place. 

 
Fig. 1. Scheme of the problem 

Let us find the distribution of the transient temperature fields 
       ,       in each of the semi-spaces from the solution 
to the following heat problem of friction: 
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 ||,)0,( 0 zTzTl , 2,1l .            (8) 

By introducing dimensionless variables and parameters: 
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the above mentioned non-linear transient boundary-value heat 
conduction problem of friction (3)–(8) can be represented in the 
dimensionless form: 
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where, taking into account the relations (9), (10), the linear de-
pendencies of thermal conductivity on temperature (2) express as 
follows: 

),(1)( 0
  TTTK llll all T , 2,1l                  (17) 

3. LINEARIZATION OF THE PROBLEM 

To the linearization of the boundary-value problem (11)–(16), 
the Kirchhoff transform has been used (Kirchhoff, 1894): 
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By applying the transformation (18) to the problem (11)–(16) and 

taking into account the relations )()(   llll TKTc , we have: 
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In the assumption of linear dependence (17), from formula 
(18) we find the connection between the dimensionless 
temperature   

       and the Kirchhoff function        , 

      in the form: 

]1),(21[),( 1
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Using the approximate expansion (Nowinski, 1962):  

),,0(1),0(21  llll 2,1l .                         (26) 

from equation (25) we obtain the linear dependence between 
dimensionless temperature and the Kirchhoff function on the 
surface of friction: 
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In accordance with relations (27) the boundary condition (22) 
takes the form: 
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Note that the linear relationship (27) between the 
dimensionless temperature and the Kirchhoff function takes place 
only on the surface of the contact. Within each semi-spaces the 
dependences between these variables are nonlinear and are 
given by equation (25). 

4. THE KIRCHHOFF FUNCTIONS AT UNIFORM SLIDING 

By applying the Laplace integral transform (Sneddon, 1972): 
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to the linear boundary-value problem (19)–(21), (23), (24) and 
(28), we obtain the following boundary problem for two ordinary 
differential equations of the second order: 
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The solution to the problem (30)–(34) has the form: 
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where: 
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Applying the inversion formulae (Bateman and Erdelyi, 1954): 
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where: 
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to the Laplace’a transform solutions (35) and (36), we obtain the 
Kirchhoff functions for each semi-spaces at any time moment 

   : 
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At     from solutions (40)–(42) we have: 
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where: 
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The dimensionless temperature of the semi-spaces we calcu-
late using the formulae (25) and (42)–(45). 

5. THE KIRCHHOFF FUNCTIONS  
AT SLIDING WITH UNIFORM DECELERATION 

At braking with a constant deceleration the specific power 
of friction is equal (Kuciej, 2012): 
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where         
  . In this case, the Kirchhoff functions can be 

found from the Duhamel formula (Ozisik, 1980) at       : 
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where the functions   
         ,       have the form (42) 

and (43). Substituting under the integral sign in formula (47) 

the functions (42), after integration we find at       : 

),(),(),( )1(1)0(  
lsll , 2,1l                     (48) 

where: 

)]}.5.0(erfc),([

)25.0exp()(3),(

)]5.0(6{[)1(),(

2/12

121

1211)1(













llll

ll

llll

 (49) 

At     from the solution (49) it follows: 
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In limiting case      from the formulae (44) and (48), (50) 
we obtain the Kirchhoff functions at the perfect thermal contact 
between the semi-spaces in the form (Fazekas, 1953): 
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6. NUMERICAL ANALYSIS AND CONCLUSIONS 

The numerical analysis for two friction pairs gray iron - A356 

and A315 - A356 for          ,           and    
   , has been performed. The values of coefficients of thermal 

conductivity   , thermal diffusivity   of materials and values of 
the coefficients  , which characterize changing of the coefficients 
of thermal conductivity and specific heat with tempera-ture, are 
shown in Tab. 1. 

The evolutions of the dimensionless temperature   on the con-
tact surfaces during constant sliding for two friction pair, with and 
without taking into account the thermosensitive materials, are 
shown in Figs. 2: gray iron - A356 (Fig. 2a) and A315 - A356 
(Fig. 2b).  
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Tab. 1. Thermo-physical materials properties used in numerical analysis 

Materials 
    

        

       

      

       

    

Gray Iron  

(Gundlach, 1983) 
45.45 1.368 -0.253026 

A315  

(Overfelt, 2001) 
128.65 5.9552 0.914108 

A356  

(Sok, 2006) 
150.01 7.9 0.712619 

a) 

 

b) 

 

Fig. 2. Evolutions of the dimensionless temperature on the contact  
surface during constant sliding, for two friction pairs:  
a) gray iron - A356, b) A315 - A356, for Bi = 5. The solid curves – 
termosensitive materials; the dashed curves – constant properties 

For this pair of friction: gray iron - A356 (Fig. 2a), taking into 
account the thermal sensitivity of the materials causes a slight 
increase of temperature in comparison with the temperature evo-
lution calculated without taking into account thermal sensitivity 
of materials. Thermal conductivity of gray iron is three times less 
than the thermal conductivity of the material A356, which makes 
the temperature for this material on the contact surface is always 
greater, from the beginning of the friction process to the end. 
Decrease of the thermal conductivity of gray iron with tempera-
ture, causes increase in the temperature on the contact surface. 

a) 

 

b) 

 

Fig. 3. Evolutions of the dimensionless temperature on the contact  
surface during linearly decreasing velocity of sliding for two friction 
pairs: a) gray iron - A356, b) A315 - A356, for Bi = 5. The solid 
curves – termosensitive materials; the dashed curves – constant 
properties 

A different situation can be observed in Fig. 2b, where for the 
friction pair A315 - A356 the evolutions of temperature are shown. 
Because of close values of thermal conductivity of both materials 
(see Tab. 1), the evolutions of the temperature on the contact 
surface are almost the same, whether it takes into account the 
thermal sensitivity or not. Increase of the thermal conductivity with 
temperature, reduces the temperature on the contact surface. 

The evolution of dimensionless temperature on the contact 
surface with linearly decreasing velocity from the nominal value at 
the start of heating to zero during a stop (braking with constant 
delay) is presented in Figs. 3. 

For both pairs of friction, i.e. Gray iron - A356 (Fig. 3a) and 
A315 - A356 (Fig. 3b), with the beginning of the braking, tempera-
ture on the contact surface increases rapidly, reaching 
a maximum value in the middle of heating time, and then begins 
to decrease until it reaches a minimum value at the stop time. 
Taking into account changes in thermo-physical properties of 
materials under the influence of temperature, for both pairs of 
friction it causes the same changes in the evolution of the temper-
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ature as in the case of constant sliding velocity. 
Using Duhamel's formula and obtained solution to the heat 

conduction problem of friction in the case of a constant sliding 
speed of two homogeneous semi-space, the mathematical model 
has been proposed to calculate the non-stationary temperature 
fields with a linear velocity sliding (braking with uniform delay). 
The solutions obtained in this article can be used as an introduc-
tion to further research on determining distribution of temperature 
in friction pairs, taking into account changes in their thermal prop-
erties under the influence of temperature. 

Notations:   – characteristic dimension;    – Biot number;  
  – specific heat;        – Gauss error function;           

                          
         ,   – coefficient 

of friction;   – coefficient of thermal conductivity of contact; K – 

coefficients of thermal conductivity;   – coefficients of thermal 
diffusivity;    – pressure;   – temperature;    – dimensionless 

temperature;    – initial temperature,   – time;    – breaking time; 

   – constant speed; z – spatial coordinate. 
Greek symbols:   – Kirchhoff’s variable;   – dimensionless 

time;    –dimensionless breaking time;   – dimensionless spatial 

coordinate;    – coefficient. 
Subscripts: 1 – top semi-space; 2 – bottom semi-space. 

REFERENCES 

1. Abdel-Aal H.A. (1997), On the distribution of friction-induced heat in 
the dry sliding of metallic solid pairs, Int. Comm. Heat Mass Trans., 
Vol. 24, No. 7, 989–998. 

2. Abdel-Aal H.A., Smith S.T. (1998), On friction-induced temperatures 
of rubbing metallic pairs with temperature-dependent thermal 
properties, Wear, Vol. 216, No. 1, 41–59. 

3. Bateman H., Erdelyi A. (1954), Tables of integral transforms, V. 1, 
McGraw-Hill, New York. 

4. Fazekas G.A.G. (1953), Temperature gradient and heat stresses 
inbrakes drums, SAE. Trans., Vol. 61, No. 1, 279–284. 

5. Gundlach, R.B. (1983), The effects of alloying elements on the 
elevated temperature properties of gray irons. (Retroactive Cover-
age),, Transactions of the American Foundrymen's Society, Vol. 91, 
389–422.  

6. Kirchhoff G.R. (1894), Vorlesungen über die Theorie der Wärme, 
B.G. Teubner, Leipzig. 

7. Kuciej M. (2012), Analytical models of transient frictional heating, 
Oficyna Wydawnicza Politechniki Bialostockiej, Bialystok (in Polish),. 

8. Kushnir R.M., Popovych V.S. (2011), Heat conduction problems of 
thermosensitive solids under complex heat exchange. In: Heat con-
duction – Basic Research, V. Vikhrenko Ed., 131–154, In Tech, 
Croatia. 

9. Ling F.F. (1973), Surface Mechanics, John Wiley&Sons, New York. 
10. Nowinski J. (1962), Transient thermoelastic problem for an infinite 

medium with a spherical cavity exhibiting temperature-dependent 
properties, J. Appl. Mech., Vol. 29, 399–407. 

11. Overfelt R.A., Taylor R.E., Bakhtiyarov S.I., Wang D. (2001), 
Thermophysical properties of 319 aluminum, compacted graphite 
iron, and inconel 713, AFS Transactions, 02-115, 141–150. 

12. Ozisik M.N. (1980), Heat conduction, New York, John Wiley, 687 p. 
13. Sneddon I.N. (1972), The use of integral transforms, McGraw-Hill, 

New York. 
14. Sok W.K. (2006), Thermophysical properties of automotive brake 

disk materials, International Forum on Strategic Technology 
(IFOST),, 18-20 Oct. 2006, 163–166, Ulsan. 

15. Yevtushenko A.A., Kuciej M. (2012), One-dimensional thermal 
problem of friction during braking: The history of development and 
actual state, Int. J. Heat Mass Trans., Vol. 55, No. 15–16, 4148–
4153. 

Acknowledgement. The present paper is financially supported by the 
National Science Centre of Poland (project No 2011/01/B/ST8/07446). 

 

 

 


