Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Motion of a tip used in an atomic force microscope can be described by the Lennard-Jones potential, approximated by the van der Waals force in a long-range interaction. Here we present a general framework of approximation of the tip motion by adding three terms of Taylor series what results in non-zero harmonics in an output signal. We have worked out a measurement system which allows recording of an excitation tip signal and its non-linear response. The first studies of spectrum showed that presence of the second and the third harmonics in cantilever vibrations may be observed and used as a new method of the investigated samples characterization.
Słowa kluczowe
Rocznik
Tom
Strony
535--539
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland
autor
- Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland
autor
- Chemical Faculty, Department of Electrochemistry, Corrosion and Materials Engineering, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland
Bibliografia
- [1] G. Binning and H. Rohrer, “Scanning tunneling microscopy”, Surface Science 126, 236-244 (1983).
- [2] G. Binnig and C.F. Quate, “Atomic force microscope”, PhysicalReview Letters 56, 930-933 (1986).
- [3] R. Garcia and A. San Paulo, “Attractive and repulsive tipsample interaction regimes in tapping-mode atomic force microscopy”, Physical Review B 60, 4961-4967 (1999).
- [4] S. Cuenot, Ch. Fr´etigny, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy”, PhysicalReview B 69, 165410 (2004).
- [5] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, “Chemical identification of individual surface atoms by atomic force microscopy”, Nature 446, 64-67 (2007).
- [6] R. Perez, Y. Stich, M. Payne, and K. Terakura, “Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111)”, Physical Review B 58, 10835-10849 (1998).
- [7] T. Fukuma, J.I. Kilpatrick, and S.P. Jarvis, “Phase modulation atomic force microscope with true atomic resolution”, Reviewof Scientific Instruments 77, 123703 (2006).
- [8] D. Platz, E.A. Tholen, C. Hutter, A.C. von Bieren, and D.B. Haviland, “Phase imaging with intermodulation atomic force microscopy”, Ultramicroscopy 110, 573-577 (2010).
- [9] N.F. Mart´ınez and R. Garc´ıa, “Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy”, Nanotechnology 17 (7), S167-S172 (2006).
- [10] R. Garcia and R. Perez, “Dynamic atomic force microscopy methods”, Surface Science Reports 47, 197-301 (2002).
- [11] A. Sikora and Ł. Bednarz, “The implementation and the performance analysis of the multi-channel software-based lock-in amplifier for the stiffness mapping with atomic force microscope (AFM)”, Bull. Pol. Ac.: Tech. 60 (1), 83-88 (2012).
- [12] R. Hillenbrand, M. Stark, and R. Guckenberger, “Higherharmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction”, AppliedPhysics Letters 76 (23), 3478-3480 (2000).
- [13] R.W. Stark, “Spectroscopy of higher harmonics in dynamic atomic force microscopy”, Nanotechnology 15, 347-351 (2004).
- [14] R.W. Stark and W.M. Heckl, “Higher harmonics imaging in tapping-mode atomic-force microscopy”, Review Scientific Instruments 74 (12), 5111-5114 (2003).
- [15] T. Gotszalk, P. Grabiec, and I.W. Rangelow, “Piezoresistive sensors for scanning probe microscopy”, Ultramicroscopy 82, 39-48 (2000).
- [16] P. Eaton and P. West, “Atomic force microscopy”, Oxford University Press, London, 2011.
- [17] F.J. Giessibl, “Forces and frequency shifts in atomic-resolution dynamic-force microscopy”, Physical Review B 56, 16010-16015 (1997).
- [18] H. Ueyama, M. Ohta, Y. Sugawara, and S. Morita, “Atomically resolved InP(110) surface observed with noncontact ultrahigh vacuum atomic force microscope”, Japan Applied Physics 61, L1086-L1088 (1995).
- [19] F.J. Giessibl, “Atomic resolution of the silicon (111)-(7X7) surface by atomic force microscopy”, Science 67 (5194), 68-71 (1995).
- [20] R. L¨uthi, E. Meyer, M. Bammerlin, A. Baratoff, T. Lehmann, L. Howald, C. Gerber, and H.J. G¨untherodt, “Atomic resolution in dynamic force microscopy across steps on Si(111)7×7”, Zeitschrift f ¨ur Physik B 100, 165-167 (1996).
- [21] H. H¨olscher, U.D. Schwarz, and R.Wiesendanger, “Calculation of the frequency shift in dynamic force microscopy”, AppliedSurface Science 140, 344-351 (1999).
- [22] N. Sasaki and M. Tsukada, “The relation between resonance curves and tip-surface interaction potential in noncontact atomic-force microscopy”, Japan J. Applied Physics 37, L533-L535 (1998).
- [23] M.L. Meade, “Lock-in amplifiers: Principles and application”, IEE Electrical Measurement Series 1, CD-ROM (1983).
- [24] J.H. Scofield, “Frequency-domain description of a lock-in amplifier”, Am. J. Physics 66, 129-133 (1994).
- [25] M. Kotarski and J. Smulko, “Assessment of synchronic detection at low frequencies through DSP-based board and PC sound card”, XIX IMEHO Word Congress Fundamental andApplied Metrology 1, 960-963 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42ba5d6e-0518-4c52-aca8-74bc4d85ffdf