PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion Behaviour of CuSn- and CuZnNi-coated Polypropylene Nonwoven

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości korozyjne włóknin polipropylenowych pokrywanych warstwami CuSn oraz CuZnNi
Języki publikacji
EN
Abstrakty
EN
The intended purpose of metallised nonwovens is architectural shielding against electromagnetic fields. Therefore the aim of this work was to systematically investigate the corrosion behaviour of metallic layer/polypropylene nonwoven systems in the contact with an aggressive environment (3% NaCl solution). In the work, a thermo-bonded polypropylene nonwoven was used as a substrate for CuSn and CuNiZn thin layer deposition. Nonwoven metallisation was carried out using the magnetron sputtering process. Additionally to enhance the durability of these barrier materials, their surfaces were covered with a thin, hydrophobic coating of polydimetylsiloksane. Evaluation of the corrosion resistance was made by means of potentiodynamic polarisation tests. Furthermore the degree of loss of the metallic layers was checked using a optical metallographic microscope and quantitative microanalysis by the method of Energy Dispersive X-ray Spectroscopy. It was found that the CuZnNi metallic layer deposited onto the polypropylene nonwoven shows higher corrosion resistance as compared to CuSn. In both cases, the metallic layers are the most susceptible to degradation within the nonwoven “waves”. Regardless of the layers’ chemical composition, the polydimetylsiloksane coating increases their corrosion resistance in 3% NaCl solution.
PL
W ramach pracy, jako podłoże dla cienkich warstw metalicznych CuSn i CuNiZn wykorzystana została włóknina polipropylenowa. Metalizację włókniny przeprowadzono stosując proces rozpylania magnetronowego. Zakłada się, że przeznaczeniem tak uzyskanych metalizowanych włóknin będzie ekranowanie architektoniczne przed polami elektromagnetycznymi. Z tego względu, jako cel pracy przyjęto przeprowadzenie systematycznych badań mających na celu określenie sposobu zachowania się układów warstwa metaliczna/ włóknina polipropylenowa w kontakcie z agresywnym środowiskiem korozyjnym (3% roztwórem NaCl). Dodatkowo, aby zwiększyć trwałość uzyskanych materiałów barierowych, ich powierzchnie pokryto cienką hydrofobową powłoką poli(dimetylosiloksanu). Ocena odporności korozyjnej przeprowadzona została za pomocą polaryzacyjnych testów potencjodynamicznych. Ponadto, stopień degradacji warstw metalicznych sprawdzano z wykorzystaniem optycznego mikroskopu metalograficznego oraz ilościowej mikroanalizy rentgenowskiej (EDX).
Rocznik
Strony
72--78
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institute of Technology and Education, Koszalin University of Technology, Koszalin, Poland
autor
  • Textile Research Institute, Łódź, Poland
Bibliografia
  • 1. Scholz J, Nocke G, Hollstein F and Weissbach A. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surface & Coatings Technology 2005; 192: 252-256.
  • 2. Wei Q, Yu L, Wu N and Hong S. Preparation and characterization of copper nanocomposite textiles. Journal of Industrial Textiles 2008; 37: 275-283.
  • 3. Hegemann D, Amberg M, Ritter A and Heuberger M. Recent developments in Ag metallised textiles using plasma sputtering. Materials Technology 2009; 24, 41-45.
  • 4. Pawlak R, Korzeniewska E, Frydrysiak M, Zięba J, Tesiorowski L, Gniotek K, Stempien Z and Tokarska M. Using vaccum deposition technology for the manufacturing of elektro-conductive layers on the surface of textiles. Fibres and Textiles in Eastern Europe 2012; 20, 2(91): 68-72.
  • 5. Bula K, Koprowska J and Janukiewicz J. Application of cathode sputtering for obtaining ultra-thin metallic coatings on textile products. Fibres and Textiles in Eastern Europe 2006; 14, 5(59): 75-79.
  • 6. Conde A, Nanas C, Cristobal AB and Housden Jan de Damborenea J. Characterisation of corrosion and behaviour of nanoscaled e-beam PVD CrN coatings. Surface & Coatings Technology 2006; 201: 2690-2695.
  • 7. Ibrahim MAM, Korabla SF and Yoshimura M. Corrosion of stainless steel coated with TiN, (TiAl)N and CrN in aqueous environments. Corrosion Science 2002; 44: 815-828.
  • 8. Han S, Lin JH, Tsai SH, Chung SC, Wang DY, Lu FM and Shih HC. Corrosion and tribological studies of chromium nitride coated on steel with an interlayer of electroplated chromium. Surface & Coatings Technology 2000; 133–134: 460-465.
  • 9. Ahn SH, Choi YS, Kim JG and Han JG. A study on corrosion resistance characteristics of PVD CrN coated steels by electrochemical method. Surface & Coatings Technology 2002; 150: 319-326.
  • 10. Liu C, Lin G, Yang D and Qi M. In vitro corrosion behavior of multilayered Ti/TiN coating on biomedical AISI 316 L stainless steel. Surface & Coatings Technology 2006; 200: 4011-4016.
  • 11. Kaciulis S, Mezzi A, Montesperelii G, Lomasta F, Rapone M, Casadei F, Valente T and Gusmano G. Multi-technique study of corrosion resistant CrN/Cr/CrN and CrN:C coatings. Surface & Coatings Technology 2006; 201: 313-319.
  • 12. Koprowska J, Ziaja J and Janukiewicz J. Plasma metallization textiles as shields for electromagnetic fields. EMC Europe Hamburg, International Symposium on ISBN 978-1-4244-2737-6 pp.493-496, Hamburg, Niemcy, 2008.
  • 13. Ziaja J, Koprowska J and Janukiewicz J. Using plasma metallisation for manufacture of textile screens against electromagnetic fields. Fibres and Textiles in Eastern Europe 2008; 16, 5(70): 64-66.
  • 14. Koprowska J, Ziaja J and Janukiewicz J. Plasma metallization of textiles applied as barrier materials. 12th International Conference on Plasma Surface Engineering, Garmisch-Partenkirchen, Germany, 13-17 September, 2010.
  • 15. Hansal WEG, Hansal S, Pölzler M, Kornherr A, Zifferer G and Nauer GE. Investigation of polysiloxane coatings as corrosion inhibitors of zinc surfaces. Surface & Coatings Technology 2006; 200: 3056-3063.
  • 16. Wu KH, Chao CM, Yeh TF and Chang TC. Thermal stability and corrosion resistance of polysiloxane coatings on 2024-T3 and 6061-T6 aluminum alloy. Surface & Coatings Technology 2007; 201: 5782-5788.
  • 17. Costantino G, Zeik DB and Clarson SJ. Improvement of the adhesion of silicone to aluminum using plasma polymerization. Journal of Inorganic and Organometallic Polymers 1994; 4: 425-430.
  • 18. McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science 2005; 47: 3202-3215.
  • 19. Souissi N, Sidot E, Bousselmi L, Triki E and Ribbiola L. Corrosion behaviour of Cu-10Sn bronze in aerated NaCl aqueous media – Electrochemical investigation. Corrosion Science 2007; 49: 3333-3347.
  • 20. Robbiola L, Tran TTM, Dubot P, Majerus O and Rahmouni K. Characterisation of anodic layers on Cu-10Sn bronze (RDE) in aerated NaCl solution. Corrosion Science 2008; 50: 2205-2215.
  • 21. Debiemme-Chouvy C, Ammeloot F and Sutter EMM. X-ray photoemission investigation of the corrosion film formed on a polished Cu-13Sn alloy in aerated NaCl solution. Applied Surface Science 2001; 174: 55-61.
  • 22. Koprowska J, Dobruchowska E, Reszka K and Szwugier A. Influence of selected process conditions on morphology and shielding effectiveness of PP nonwovens modified with metallic layers. Fibres and Textiles in Eastern Europe 2015; 23, 5(113): 84-91.
  • 23. Wang J, Xu Ch and Lv G. Formation process of CuCl and regenerated Cu crystals on bronze surface in neutral and acidic media. Applied Surface Science 2006; 252: 6294-6303.
  • 24. Badawy WA, Ismail KM and Fathi AM. Effect of Ni content on the corrosion behaviour of Cu-Ni alloys in neutral chloride solutions. Electrochimica Acta 2005; 50: 3603-3608.
  • 25. Colin S, Beche E, Berjoan R, Jolibois H and Chambaudet A. An XPS and AES study of the free corrosion of Cu-, Ni- and Zn-based alloys in synthetic sweat. Corrosion Science 1999; 41: 1051-1065.
  • 26. Karpagavalli R and Balasubramaniam R. Development of novel brasses to resist dezincification. Corrosion Science 2007; 49: 963-979.
  • 27. Mandal M, Singh D, Gouthama, Murty BS, Sangal S and Mondal K. Porous copper template from partially spark plasma-sintered Cu-Zn aggregate via dezincification. Bulletin of Materials Science 2014; 37: 743-752.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42b6fdc1-1859-404c-ac11-e7f848745abc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.