PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aspekt bezpieczeństwa z cząstkami i związkami węgla

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Zanieczyszczenie związkami węgla, najczęściej wymienianym jest dwutlenkiem węgla, przyczynia się do negatywnych zmian wpływających na jakość powietrza oraz wzrostu efektu cieplarnianego. Gazy cieplarniane bezpośrednio wpływają na środowisko, wzrost średniej globalnej temperatury, zanik ekosystemów oraz stanowią o potencjalnych szkodliwych wpływach na zdrowie ludzi. Opublikowane wyniki badań wykazują związek pomiędzy występowaniem pyłów i nanocząstek znajdujących się w powietrzu a objawami pogarszenia stanu zdrowia, wykazując wzrost zachorowalności i śmiertelności. To jest również powiązane ze strukturą nanomateriałów, które wykazują zwiększoną aktywność w porównaniu do klasycznych próbek makro rozmiarów, co umożliwia im głębsze wnikanie do płuc. Występowanie nanocząstek o bardzo małych wymiarach i o dużej rozwiniętej powierzchni ułatwia zachodzeniu reakcji, które mogą wykazywać znamiona toksyczności w nanometrowej skali.
EN
Carbon pollution, most notably carbon dioxide, are part of a collection of particles that negatively influence the quality of ourair and increase the greenhouse effect. Greenhouse gases have a direct influence on the environment, causing extreme weather changes, a global temperature increase, the loss of ecosystems and potentially hazardous health effects for people. Available research has demonstrated an association between exposure to ambient airborne particulates and nanoparticles and various adverse health effects including increased morbidity and mortality. It is also connected with the rapid expansion of nanotechnology that bring many potential benefits. Nanomaterial structures are more active than the same materials of conventional sized samples and can be inhaled more deeply into the lungs. The very small size distribution and large surface area of nanoparticles available to undergo reactions may play a significant role in nanotoxicity.
Czasopismo
Rocznik
Tom
1
Strony
1--9
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Warszawa
Bibliografia
  • [1]. I. Sykorova , M. Havelcova, A. Zeman, H. Trejtnarova, Carbon air pollution reflected in deposits on chosen building materials of Prague Castle, Science of the Total Environment 409, pp. 4606–4611 (2011).
  • [2]. IPCC Guidelines for National Greenhouse Gas Inventories 2006.
  • [3]. S. S. Myers, et al., Increasing CO2threatens human nutrition, Nature 509, 13179 (2014).
  • [4]. P. Hogy, et al., Effects of elevated CO2on grain yield and quality of wheat: results from a 3-year free-air CO2enrichment experiment. Plant Biol. 11, pp. 60–69 (2009).
  • [5]. B. D. Duval, et al., CO2effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecology 213, pp. 505–521 (2012).
  • [6] Toxicological Profile for Carbon Monoxide, U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry, June 2012.
  • [7]. J.-Y. Min, D. Paek, S.-Il Cho, K.-B. Min, Exposure to environmental carbon monoxide may have a greater negative effect on cardiac autonomic function in people with metabolic syndrome, Science of the Total Environment 407, pp. 4807 –4811 (2009).
  • [8]. P. I. Jalava, et. al., Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas, Particle and Fibre Toxicology vol. 9, 37 (2012).
  • [9]. J. C. Seagrave, et al., Composition, Toxicity, and Mutagenicity of Particulate and Semivolatile Emissions from Heavy-Duty Compressed Natural Gas-Powered Vehicles, Toxicological Sciences 87(1), pp. 232–241 (2005).
  • [10] Helene Dumortier, et al., Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells, Nano Letters 8(7), pp. 1522 –1528 (2006).
  • [11]. R. Hirlekar, et al., Carbon nanotubes and its applications: a review, Asian Journal of Pharmaceutical and Clinical Research Vol. 2(4), pp. 17 –27 (2009).
  • [12]. J. H. Park, et al., Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy, Science of the Total Environment 409, pp. 4132–4138 (2011).
  • [13] E. Rydman, et al., Evaluation of the health effects of carbon nanotubes, Final report on project number 109137 of the Finnish work -8 -environment fund, Finnish Institute of Occupational Health, Helsinki 2013.
  • [14] S.-J. Yu, et al., Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity, Journ. of the American Chem. Soc. 127(50),17604 (2005).
  • [15] N. W. S. Kam, M. O’Connell, J. A. Wisdom,, and H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. of the National American Science 102(33), pp. 11600 –11605 (2005).
  • [16]. M. Il Kim, et al., A Highly Efficient Colorimetric Immunoassay Using a Nanocomposite Entrapping Magnetic and Platinum Nanoparticles in Ordered Mesoporous Carbon, Advanced Healthcare Materials 3, pp. 36 –41 (2014).
  • 17]. J. Kayat, V. Gajbhiye, R. K. Tekade, N. K. Jain, Pulmonary toxicity of carbon nanotubes: a systematic report, Nanomedicine: Nanotechnology, Biology, and Medicine 7, pp. 40-49 (2011).
  • [18]. M. J. Osmond-McLeod, et.al., Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres, Particle and Fibre Toxicol., vol. 8, 15 (2011).
  • [19]. S. Hussain, et al., Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts, Particle and Fibre Toxicol., vol. 11, 28 (2014).
  • [20]. E.-J. Park, et al., Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice, Toxicology and Applied Pharmacology 244, pp. 226–233 (2010).
  • [21]. K. S. Hougaard, et al., Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice, Reproductive Toxicology 41, pp. 86–97 (2013).
  • [22]. J. P. Ryman-Rasmussen, Inhaled carbon nanotubes reach the subpleural tissue in mice, Nature Nanotechnology 4(11), pp. 747 –752 (2009).
  • [23]. H. M. Braakhuis, at al., Physicochemical characteristics of nanomaterials that affect pulmonary inflammation, Particle and Fibre Toxicol., vol. 8, 18 (2011).
  • [24]. J. H. Sung, Subchronic inhalation toxicity of gold nanoparticles, Particle and Fibre Toxicol., vol. 8, 16 (2011).
  • [25]. J. Cheng, S. H. Cheng, Influence of carbon nanotube length on toxicity to zebrafish embryos, Intern. Journ. of Nanomedicine 7, pp. 3731–3739 (2012).
  • [26]. S. J. Froggett, et al., A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Particle and Fibre Toxicol., vol. 11, 17 (2014).-9
  • [27]. Andre Mel, Air Pollution-Related Illness: Effects of Particles, Science 308, pp. 804 -808 (2005).
  • [28]. A. A. Hashim, editor, The Delivery of Nanoparticles, Publ. by InTech, Janeza Trdine 9, 51000 Rijeka, Croatia, Copyright © 2012 InTech.
  • [29]. X. Hu, S. Cook, P. Wang, H. Hwang, X. Liu, Q. L. Williams, In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines, Science of the Total Environment 408, pp. 1812–1817 (2010).
  • [30]. S. Fiorito S, A. Serafino, F. Andreola, A. Togna, G. Togna, Toxicity and biocompatibility of carbon nanoparticles. J. Nanosci. Nanotechnol 6, pp. 591–599 (2006).
  • [31]. S. Y. Madani, A. Mandel,and A. M. Seifalian, A concise review of carbon nanotube’s toxicology, Nano Reviews 4, 21521 (2013).
  • [32]. Y. Chang, et al., In vitro toxicity evaluation of graphene oxide on A549 cells, Toxicology Letters 200, pp. 201–210 (2011).
  • [33]. X. Zhang, et al., Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications, Toxicol. Res. 2, 335 (2013).
  • [34]. M. I. Kim, Y. Ye, M.-A. Woo, J. Lee, and H. G. Park, A Highly Efficient Colorimetric Immunoassay Using a Nanocomposite Entrapping Magnetic and Platinum Nanoparticles in Ordered Mesoporous Carbon,Advanced Healthcare Materials 3(1), pp. 36 –41 (2013).
  • [35]. Morimoto, N. Kobayashi, N. Shinohara, T. Myojo, I. Tanaka, J. Nakanishi, Hazard Assessment of Manufactured Nanomaterials, Journal of Occupational Health 52, pp. 325-334 (2010).
  • [36]. T. A. J. Kuhlbusch, et al., Nanoparticle exposure at nanotechnology workplaces: A review, Particle and Fibre Toxicol., vol. 8, 22 (2011).
  • [37]. X. Zhang, W. Hu,J. Li, L. Tao, and Y. Wei, A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond, Toxicol. Res. 1, 62 (2012).
  • [38]. X. Liu, R. H. Hurt, A. B. Kane, Biodurability of Single-Walled Carbon Nanotubes Depends on Surface Functionalization.” Carbon 48(7), pp. 1961-1969 (2010)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42b6f267-cba0-4880-8f7c-4fb06a2eb186
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.