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Abstract

The paper is concerned with the application ofyyread semi-Markov (SM) processes in reliability peois.
There are two kinds of perturbed SM processes predén the paper. First of them was defined by Slgval

the second one was introduced by Pavlov and UshaBbpak’s concept of perturbed SM is applied for
calculating the approximate reliability function ofany tasks operation process and Pavlov and Ushakov
concept of that one is used to obtain the apprameliability function of a repairable cold stapdéystem

with a switch.

1. Introduction and {r,:n=0,1..} denotes a sequence of state

It is well known that in case of complex changes instants. From the definition of
semi-Markov process it follows that the sequence

{X(r,):n=0,1...} is a homogeneous Markov is
with transition probabilities

semi Markov models the calculating of the exact

probability distribution of the first passage tirte
subset of states, usually is very difficult. Théme
only way it seems to be is finding the approximate ) o
probability distribution of that random variableid p; = P(X(7,,) = 11 X(7,) =1) =limQ; (©). 4)
possible by using the results from the theory of
semi-Markov ~ processes  perturbations.  The The function
perturbed semi-Markov processes are defined in

different ways by different authors [8], [9], [10], G.(t) = P(

-7, <t|X(r.)=i
[11], [4]. We introduce only two concepts of the P SHX(E) =D

n+l

perturbed semi-Markov process presented — the :jDZSQiJ ® 5)(
concept of Shpak and the concept of Pavlov &
Ushakov which was presented by [4]. is a cumulative probability distribution of a ramdo

2. Characteristics of Semi-Markov process variable T, that is called a waiting time of the state

i. The waiting timeT, is the time spent in staie

To have a semi-Markov process as a model we have . :
when the successor state is unknown. The function

to define its initial distribution and all elememn$
its kernel. Recall that the semi-Markov kernelhs t : . .
matrix of transition probabilities of the Markov Ry (1) = P(7, — 7, St X(7,) =1, X(Thi0) = ]
renewal process. Q)

=_“nr’ (6)

Q) =[Q,(®):i,j 0S|, t20 M P,

is a cumulative probability distribution of a ramdo
variableT; that is called a holding time of a state

Q () =P(r,., — 1, <t, X(7,..) = | X(7,) =i) (2) if the next state will bg¢ From (6) we have

where
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Qij t) = P Fij (t). ) (7 aiA(S) = ije‘ainj 1), (11)

It_ means that a semlMarkov.process with a” That linear system allows to construct the systém o
discrete state space can be defined by the tramsiti |inear equations for the expectation of the random

matrix of the embedded Markov chain: variables ©,,, I J A'. The system is equivalent to
P=[p,:i,j08S] the matrix equation

and a matrix of CDF of holding times: (I =Py)O, =Ty, (12)

F(t) =[F,@®):i, jOS]. where

A value of a random variable Pa =I[ Bi 0, JUA],

A, =min{nON: X(r,) O A} (8) 0,. =[E(6,):i,0A]",

denotes a discrete time (a number of state changes) = _ . '
of afirst arrival at the set of states T =[E(T)-1LOA],

AOS of the embedded Markov chain @ndl is the unit matrix.
X(r,):nN,}. A random variable®, =7A
{X(7,) : of . A A 3. SM Perturbed processes by Shpak

denotes a first passage time to the subset the

time of a first arrival at the set of stateA ] S of In the paper of Shpak a perturbed SM process is
the semi-Markov procedsX (t) :t =0}. called an associated with SM process. We introduce

our version of Shpak definition. Let
A={12.. N}, A={0} andS=A0A.
®,(t)=PO, <t|X(0)=i),t=0 Suppose tha{ X°(t):t >0} be a semi-Markov
process with the state spatand a kernel

A function

is Cumulative Distribution Function (CDF) of a

random variabled,, denoting the first passage time Q°(t) = [Qi‘j) t):i, jOA"].
from the statel (] A’ to a subseA or the exit time

of { X(t) :t =0} from the subsef' with the initial Definition 1.

statei. From the theorems presented Kuyroluk & The semi-Markov proces§ X(t):t=0} with a
Turbin (1976), Silvestrov (1980), Grabski (2002) state spac&is said to be perturbed with respect to
concerning the distributions and parameters of the pe process X°(t) :t =0}, if the components of

random variables ©,, it follows that the the kernel Q(t) =[Q, (t):i, j0S] of the process
Laplace Stielties (I- S) transforms of the CDF {X(t):t =0} are

®,(t), iOA satisfy the linear system of

equations Q0= {i[l_ F001dQ(x), i, jOA
29 = 28,9+ Tq (99, (©) DA JOA
where Qo(t) = |-G (MIdF (9,1 D A,
"XCE Ie‘s‘d@iA(t), (10) where G’(t)= ¥ Q/(t) and the functions

F (t) =P{Z, <t}, iOA are CDF of the independent
random variablesZ,,i JA having finite first
moments.

are L-S transforms of the unknown CDF of the
random variable®,,, i 0 A" and
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A random variable®,, denotes a first passage if £ is small number. We apply this theorem to
calculate the approximate reliability function bkt
object making many tasks operation.

3.SM mode of many tasks operation process

times from a state[J A' to state 0. Let

m’ = [[1-G/(t)]dt,i O A, (13)
0 3.1. Description and assumptions
where Many technical objects are destined to realizatibn
many tasks, for example transport means. Different
G(t) = 3 Q°(t), (14) tasks determine different load rates and finally
' oA imply different failure rates. We assume that an

object can realized taskg,,...,z, that are the

A numberny’ is an expectation of holding time of values of a random variablg having a discrete
a statei JA' for the process{X°(t):t=0}. A distribution P(Z=2z)=a, k=1..r. We
number & = p,, = Um Q,(t) denotes a transition  suppose that at the momerttg,, nUN, with the

probability of the SM proces§X(t):t= OJrom probability a,, k=1...,r are beginnings of the
the statei J A' to the state 0. Ler?® =[72°,...7% ] realizations of tasksz, , k=1,...,r . Time of the
denotes a stationary distribution of an embedded task z, realization is a nonnegative random variable

Markov chain of the SM process SpK°(t):t> 0} & with CDF U, (X) = P(&, <X). A failure of a

and let working object may occur. Suppose that a lifetime

£= 3 Ps. (15) of the obje.ct realizi.ng taskz, is a nonnegative
i0A' random variableg, with CDF F, (X) = P{¢, < X}.

In case of the failure of the object is repaired by

time y that is a positive random variable with CDF

G(x) =P(y<x). If in time interval of length¢,

Theorem 1. [12]
If the embedded Markov chain of the SM process

SM {X°(t):t>=0} has the stationary distribution
the failure of the object does not occur then at th

7_70 =[nf,..'.,n‘,j], £>0 and disj[ribution of waiting moment of the end of the task realization, a period
times, defined by CDF'$3°(t )i =1 ....,N, have of the object maintenance service begins. The kengt

positive finite expectations, then of that period is a nonnegative random variaple
having distribution given by CDF

Ig'[rc]) P{£0, >1} =exp[-At], 120, (16) V, (X) = P(r7, £X). Suppose that every service is
full renewal and the instants of their ending thee
where moments of realization tasks beginning. We assume
that presented random variables are mutually
1= 1 17) independent and their copies are independent too.
s'm’’ We also suppose that at least the random variables

i0OA*

¢, kK=1...,r have absolutely continuous (with

respect to the Lebesque measure) probability
distribution and all random variables have finitela
positive second moments.

Notice, the asymptotic distribution of a random
variable does not depend on the stafeA'. If A'
denotes a set of ,up” states in SM reliability miode
{X(t):t=0}, and A={0} is a “down” state then
this theorem allows to calculate the approximate
reliability function. From above theorem it follows We define following states:

that * k-arealization of thetasg , k=1,...,r,

* r+k — maintenance service after realization of
the taskz, , k=1,...,r,
* 0 - general repair after failure.

3.2. Construction of a mode

R(t) = P{©,, >t} = P{£0,, > &}
=exp[-Aet],t= O, (18)
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Let {X(t):t=0} be a stochastic process with a

piecewise constant, right continuous trajectories a
a set of state§={0,1,...,2r .}

The change of process states takes place at the
random instants,, 7,, 7,

From the assumptions it follows that a state of
process that is achieved at an instapt and its
sojourn time does not depend on the states achieved
at the instantsr,, ...,7,, an their sojourn times. It
means tha{ X (t) :t = 0}is a semi-Markov process.
We assume that the initial distribution is giv®n

Qu(t) = i[l—ul(t)]dﬁ(x) ,
Qu(t) = :IJ[l— F.(0]dU, (%),

Qult) = i[l—uz(t)]sz(x) ,

Qu(t) = i[l‘ F,(®)]dU,(x),

Q) =aVi(t), Qu(t) =aV(t)

k=1..r

t)=aV,(t),
= Or +1.. 21 Quu(t) =2V, (t)

P(X(0)=k) = {Zk’ Q.o (1) =3V, (t)

From Definition 1 it follows that this process can be
treated as a perturbed process with respect to a

semi-Markov procesg X°(t):t> O}with a state
spaceA={], 2,3 4}and a kernel

From the definition of the semi-Markov kernel
elements and assumptions we have

Q) =P <t, ¢ >&,)
: 0 0 Qb 0O
=[L-F@ldU, (9, k=1 .or o=l ° 0 0 Q)
Qu) Q) 0 0 |
Qo) =P(¢, <t, & >¢,) Qu() Qut) 0 0
where

= [[L-U, O1dF, (), k =1,..

() =P(1, <t.Z=2,)

|'+kJ

=a\V, (), k=L..,r, j=1..,,

Q1) =Py =t,2=2)

r )

Qx(t) =U, (1),

Q) =aV,(t),

Qu(t) =aV,(1),

Q2 (1) =U, (1),

Q5 (1) =aVy(t),

Q1) =aV,(t).

The transition probability matrix of an embedded

—a G, = Markov ~ chain of semi-Markov  process
=86, J=L.r {X°(t) :t 20} have the form
Therefore the semi-Markov model is constructed. 0 0 10
For simplicity of notation we take= 2. In this case
the Semi-Markov kernel of the model is PO = 0 0 01
_ a a 0 Of
Q) Q@ ©0 0 0 a a 00
Qu® 0 0 Qs O
Q) =|Qp®) O 0 0 Q.| The stationary distributionr® =[72°, 722, 72, 712] of
0 Qu(t) Qut) O 0 this Markov chain, we obtain by solving the linear
| 0 Q) Q) 0 0 equation system
where

Quu(t) =a,G(1),

Qu. (1) = a,G(1),
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L 1111 {X(t):t=0} is SM process with the
The solution is7 :[ZZZZ} state space S=AOA ' and the kernel
Q) =[Q, (t):i, jOS], the elements of which have

The other parameters frofineorem 1 that we need the formQ, (t) = p, F, (t ).

. Assume that
& = g[l—Ul(X)]dFl(X),

£=2p, (19)
JOA
& = g[l—UZ(X)]dFZ(X), and
£ =0, pi?=L i, jOA" (20)
1-¢
£, =0,
Let us notice thaty, p; =1.
o JOA!
m’ =EU,) = £[1—U1(t)]dt, A semi-Markov process{X(t):t= O}with the

discrete state spa&defined by the renewal kernel
Q(t) =[p,;F;(t):i,jOS], is called the perturbed

process with respect to SM procgss°(t) :t > 0}
with the state spacd' defined by the kernel

m = E(U,) = [[L-U, O],

mS = E(V,) = [[1-V, ()],
0 Q°(t) :[pi(j)F” t):i, jOA].

m; = E(V,) = [[1-V,(D)]dt, We are going to present the theorem that is our
° version of theorem proved by [5].
. The number
E=YTTE,
i=1 o
m’ = [[1-G’(t)]dt, iOA, (21)
1 0 0 0
= 2 {J1-U.09107, 09 +T-U, 910 09 |
° 0 where
4 0 0
- _ Gt = ¥ QU(t 22
EU,) +EU,) +E(V,) +E(V,) © %*'QJ() (2)

Finally we obtain the approximate reliability IS the expected value of the waiting time in state

function for the proces§ X°(t):t> 0}Denote the stationary
distribution of the embedded Markov chain in SM
11U, (91R 9+ 1-U, (9]F; (9 process X"(t):t2 O}y 7 =[m": 1O AT
Rit)=|~ 0 t| (18) Let
E(U,)+EU,) +EV,) +EV,)
e=yme, m’=ymn. (23)
iOA i0OA

4. Pavlov and Ushakov concept of the

; We are interested in the limiting distribution bt
perturbed semi-Markov process g

random variable®,, denoting the first passage time
We introduce Pavlov and Ushakov [10] concept of qm the statd [J A' to the subsed .
the perturbed semi-Markov process presented by

[5]- Theorem 2. [10] If the embedded Markov chain

Let A'=S-A be a finite subset of states ahde defined by the matrix of transition probabilities
at least countable subset @& Suppose that
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P :[pij ‘i, jOS], satisfies the following distributions given by probability density functin
(pdf) f(x),x=0. When the operating component
fails, the spare is put in motion by the switch
f =P(A, <o|X(0)=i)=1 iOA (24) immediately. The failed is renewed. There is a
" A ’ single repair facility. A renewal time is a random
variable having a distribution depending on a fhile
Em,,-%s(k E(T)=c, (25) component. We suppose that the lengths of repair
periods of units are represented by identical

conditions

(26) copies of nomegative random variablesy

which have cumulative distribution functions
H(X) =P(y<x),x=0. The failure of the system

iDDA/uiA = %nfiA(n) <o,

then occurs when the operating unit fails and the
. component that has sooner failed in not still

lim P(s0 . > X :e‘@, 27 renewe_d or when f[he operating component f{;uls and
-0 (€9 > %) (@7) the switch also fails. LetJ be a random variable

having a binary distribution
where 77° =[7 :i O A] is the unique solution of

the linear system of equations b(k) =P(U =k)=a“(1-a)"™, k=01 a0l (0),
°=mP°, 71=1 (28) whereU =0, if if a switch is failed at the moment
of the operating unit failure, arld =  if, the switch
From that theorem it follows that for smadl we works at that moment. We suppose that the whole
get the following approximating formula failed system is replaced by the new identical one.
The replacing time is a non negative random
Y e variablen with CDF
PO, >t)=exp—-Z__t| t=0 (29)
) > mf K(X) = P(7 < X), X2 0.
4. 1. Reliability of acold standby system 4.3. Construction of reliability model

To describe the reliability evolution of the system
we have to define the states and the renewal kernel
We introduce the following states:

0 — failure of the system

renewal of the failed component after its fa|u

a spare unit is working

The presented model is some modification of the
model that was considered by [1], [3] and many
others. To describe the reliability evolution okth
system, we construct a Semi-Markov process by
defining the states and the renewal kernel of that 1-
one. In our model the time to failure of the sysiem ) _ .
represented by a random variable that denotes the2 ~ POth an operating unit and a spare are "up”.
first passage time from the given state to the etubs The schema shown in figure 2 presents functioning
of states. Appropriate theorems from the Semi- Of the system. Let0O=7;,7,,7, ,..denote the
Markov processes theory allow us to calculate the instants of the state changes, diYdt) :t> I a

system. As calculatlr_lg an exact reliability fl.mot'o which keeps constant values on the half-intervals
of the system by using Laplace transform is often

complicated matter we obtain an approximate [7n:7m), 0L.. and is right hand continuous.

reliability  function applying a Theorem 2 This process is not semiMarkov, as no memory
concerning the perturbed Semi-Markov processes. property is satisfied for any instants of the state

changes of that one.

Let us construct a new random process in a
We assume that the system consists of one operatingfollowing way. Let 0=7, and 7,,7, ,... denote
series unit, an identical standy unit (component) instants of the subsystem failures or instantshef t

and a switch. We assume that time to failure ¢fibo w)tzotle_ti)(/)stedmf. re(;uta)wal. 'I;_he random  process
units are represented by non-negative mutually{ (t):t20} defined by equation
independent copies of a random varialglewith

4.2. Description and assumptions
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X(0)=0,X(t)=Y(r,) for tO[r,,7,..)  (30) Bo(9) = T (S) + B (9T (9),

is the semi-Markov one.

To have a serrilarkov process as a model we have
to define its initial distribution and all elemera$ Hence

its kernel. From assumption and definition semi

Bo(9) = Tro(S) * B (9T, (9). (36)

. - — alo(s)
Markov kernel we obtain -8tate semMarkov Bo(s) “1o6.(9)"
process with the kernel s
0 0 Q02 (t) &20 (S) = azo(s) +qilf#ql(os()8)- (37)
QW) ={Qu® Qu® 0 |, (31) G
Q) Q. O Consequently, we obtain the Laplace transform of
the reliability function
where
~ 1-@, (s
Q. (1) = K(t), (32) R(s) = —qoj"( ) ) (38)
Qlo(t)=F(t)—a}H(x)dF(x), The transition matrix of the embedded Markov
0 chain of the semi-Markov proce§X(t) :t =0} is
Qu(t) =aJ H(x)dF (x), (33) 0 0 1
0
P=1po Py O
on(t) = (1_ a)F(t)v Q21(t) =aF (t) p20 le 0
_ . (39)
Assume that, the initial state is 2. It means #mat
initial distribution is where
p©) =[0 0 1]. CO N

Hence, the semwilarkov model has been

constructed. Py =PU=1y<¢)= a£ H (%) fF (%),

4.4. Reliability characteristics p,=1-a, p,=PU=1)=a.

In our case the random variab®, that denotes

the first passage time from the stdte 2 to the
subset A= {0} represents the time to failure of the

system in our model. The function

The CDF of the waiting timesT,, i=0,1 Zre
G, (1) =K(1), G,(t) = F (1), G, (t) = F(t).
R(t)=P(@,, >t)=1-®,(t), t=0 (35) E(T,) = E(), E(T)) = E(¢), E(T;) =E(¢).  (39)

is the reliability function of the considered cold N this case the equation (36) takes the form of

standby system with repair.

In this case the system of linear equations (28) fo |1~ Py O E(@,) | _|E(Q) (40)
the Laplace-Stieltjes transforms with the unknown -a 1| E(©,) E(¢)|
functions

~ _ The solution of it is:
@,(s), t=20, 1=1 2,
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E(S)
E(®,) = , 41
@)=, (41)
akE
E(0,,) = E(0)+ 2L, (42)
~ M
4.5. An approximate reliability function
The considered SM proce$X(t):t=  @ith the

state spaceS={0,1, 2Jwe can assume to be the

perturbed process with respect to the SM process

{X°(t):t =0} with the state spacé®'={1, 2and
the kernel

(43)

QO (t) - |:Q11(t) 0:|,

Qu() O
where
QL (t) = piF, (1), Qa(t) = pa,Fyu(t).

BecauseA ={0} and

£, = Py = Q) =1-a] G(X) f (X)dlx,
then

_ pll :1

0
P = e

From

Qu (1)

P

= Fll (t) 1
we get

[G(X) f (x)dx

Qlol(t) = Fll(t) :S,—-
JG(x) f (x)dx

Notice, that
£, = Py =1-a
Hence

P,
1-¢

=1

0 —
pzl_
2
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Finally we obtain

Q1) = Fyu(t) = F(1).

The transition matrix of the embedded Markov
chain of SM procesgX°(t) :t =0} is

o

From the system of equations

P°=

(44)

}[nf,nﬁ], el (45)

we get z° =[1,0]. It follows from the Theorem2
that for a smalls andt >0

>
PO, >t)=exg - _—t|, 46
(O >1) %ﬁiﬂm (46)
where the number
m’ = [[L-G°(®)]dt, iDA, (47)

is the expected value of the waiting time in state
for the proces§ X °(t):t = 0}Denote the stationary
distribution of the embedded Markov chain in SM
procesg X°(t):t> O}by 7° =[7":i O A"]. Let

e=yme, m'=ymm. (48)
Therefore we have
e=g =1-a[H(x)f (X)dx, (49)
[XH (%) f (x)dx
m=m=— (50)
JH() f(x)dx

For € close to O we obtain the approximate
reliability function of the system

R(t) = P(©,, >1) = P(£0,, > &) (51)
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= exr{—%t} t=0.

From a shape of the parameterit follows that we
can apply this formula only if the numb&(y =>¢ ),

denoting a probability of a component failure dgrin

perturbed semi-Markov processes are applied to
explain presented method. Shpak’s [12] concept of
the perturbed semi-Markov process allowed to find
the approximate reliability function of a manyksas
operation process and Paviov & Ushakov [10]
concept provided possibility of calculation the
approximate reliability function of a cold standby

a period of an earlier failed component, is small.
Finally we obtain an approximate formula

system with recover.

References

R(t) = P{O,, > 1} = exr{—wt} G2) 1
m,
where [2]
c=TH)F(dx=P(y <), (53)

[3]

m, = [ xH (x) f (x)dx.
i [4]
We can conclude that the expectatidfd(®@,, )

denoting the mean time to failure of the considered 5]
cold standby system is

E(©.) = E(@)+ 29,

11

[6]

[7]
[8]

where
P, = ai H (X)dF (X).

The cold standby determines the increase of the

[9]

mean time to failurd + times.

1- P,
The approximate reliability function of the systém

exponential with a parameter [10]

_c@-ac)
m,

A\

[11]
5. Conclusions

In semi-Markov models the reliability function is [12]
ussualy calculated by a cumulative distribution
function of a first passage time to subset of the
process states. In case of complex semi-MarkoYlS]
models the calculating of the exact probability
distribution often is very difficult matter. Thewe

may to obtain the approximate reliability functidin.

is possible by using the results from the theory of
semi-Markov processes perturbations. The paper
shows how we can do it. Two concepts of the

187

Barlow, R.E., Proshan, F. (196%lathematical
theory of reliability. Wiley, New York, London,
Sydney.

Barlow, R.E. & Proschan, F. (1975}atistical
Theory of Reliability and Life Testing.
Probability Models. Holt Rinehart and Winston,
Inc., New York.

Brodi, S.M., Pogosian, |.A. (1978Embedded
stochastic processes in the queue theory (in
Russian). Naukova Dumka, Kiev.

Domsta, J. & Grabski, F. (1995). The first exit of
almost strongly recurrent semi-Markov process.
Applicatione Mathematicae, 23, No 3, 285-304.
Gertsbakh, 1.B.(1984). Asymptotic methods in
reliability theory: a reviewAdv. Appl. Prob., 16,
147-175.

Grabski, F. (2002).Semi-Markov model of
reliability and operation. PAN IBS, Operation
Research 30. Warszawa.(in Polish).

Kotowrocki, K. (1993).0On a Class of Limit
Reliability

Kotowrocki, K. (2004). Reliability of Large
Systems. Elsevier, Amsterdam - Boston -
Heidelberg - London - New York - Oxford -
Paris - San Diego - San Francisco - Singapore -
Sydney - Tokyo.

Koroluk, W.S. & Turbin, A.F. (1976).Semi-

Markov processes and their applications.
Naukova Dumka, Kiev ( in Russian ).

Paviov, LV. & Ushakov, LA. (1978). The
asymptotic distribution of the time until a semi-
Markov process gets out of the Kkernel.
Engineering Cybernetics 20 (3).

Silvestrov, D.S. (1980)Semi-Markov processes
with discrete state spac. Sovietskoe Radio,
Moskva, (in Russian).

Shpak, W.D. (1971). On some approximation for
calculation of a complex system reliability.
Cybernetics, 10, 68-73. (in Russian).

Ushakov, ILA. (2012).Probabilistic reliability
models. Wiley.



Franciszek Grabski
Application of perturbed semi-Markov processesin reliability

188



