PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extending Lyapunov redesign method for robust stabilization of non-affine quadratic polynomial systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Lyapunov redesign method is basically used for robust stabilization of nonlinear systems with an affine structure. In this paper, for the first time, by suggestion of a simple but effective idea, this approach is developed for robust stabilization of non-affine quadratic polynomial systems in the presence of uncertainties and external disturbances. In the proposed method, according to the upper bound of an uncertain term, a quadratic polynomial is constructed and with respect to the position of the roots of this polynomial, the additional feedback law is designed for robustness of the quadratic polynomial system. The proposed technique is also used for robust stabilizing of a magnetic ball levitation system. When the coil current is the control input of the magnetic ball levitation system, equations of this system are increasingly nonlinear with respect to control input and have quadratic polynomial structure. The effectiveness of the proposed control law is also demonstrated through computer simulations.
Rocznik
Strony
373--384
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Department of Electrical and Electronic Engineering, Shiraz University of Technology, Modares Blvd., Shiraz, P.O. Box 71555/313, Iran
autor
  • Department of Electrical and Electronic Engineering, Shiraz University of Technology, Modares Blvd., Shiraz, P.O. Box 71555/313, Iran
Bibliografia
  • [1] Binazadeh, T., Shafiei, M., and Rahgoshay, M. (2015) Robust stabilization of a class of nonaffine quadratic polynomial systems: Application in magnetic ball levitation system. Journal of Computational and Nonlinear Dynamics, 10(1):014501.
  • [2] Bonivento, C., Gentili, L., Marconi, L., and Naldi, R. (2003) Robust regulation for a magnetic levitation system. In: Proceedings of the 42nd IEEE Conference on Decision and Control, 5, 4499–4504. Boulkroune, A., MSaad, M., and Farza, M. (2012) Adaptive fuzzy tracking control for a class of mimo nonaffine uncertain systems. Neurocomputing, 93:48–55.
  • [3] Chien, Y.-H., Wang, W.-Y., Leu, Y.-G., and Lee, T.-T. (2011) Robust adaptive controller design for a class of uncertain nonlinear systems using online t–s fuzzy-neural modeling approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(2):542–552.
  • [4] Dai, S.-L., Wang, C., and Wang, M. (2014) Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE transactions on neural networks and learning systems, 25(1):111–123.
  • [5] Ge, S. S. and Zhang, J. (2003) Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Transactions on Neural Networks, 14(4):900–918. Gutierrez, H. M. and Ro, P. I. (2005) Magnetic servo levitation by slidingmode control of nonaffine systems with algebraic input invertibility. IEEE Transactions on Industrial Electronics, 52(5):1449–1455.
  • [6] Khalil, H. K. (2002) Nonlinear Systems, 3rd edition. Prentice Hall, New Jersey.
  • [7] Labiod, S. and Guerra, T. M. (2007) Adaptive fuzzy control of a class of siso nonaffine nonlinear systems. Fuzzy Sets and Systems, 158(10):1126–1137.
  • [8] Liu, Y.-J. and Wang, W. (2007) Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Information Sciences, 177(18):3901–3917.
  • [9] Meng, W., Yang, Q., Jagannathan, S., and Sun, Y. (2014) Adaptive neural control of high-order uncertain nonaffine systems: A transformation to affine systems approach. Automatica, 50(5):1473–1480.
  • [10] Moulay, E. and Perruquetti, W. (2005) Stabilization of nonaffine systems: a constructive method for polynomial systems. IEEE Transactions on Automatic Control, 50(4):520–526.
  • [11] Shen, J.-C. (2002) H control and sliding mode control of magnetic levitation system. Asian Journal of Control, 4(3):333–340.
  • [12] Shiriaev, A. S. and Fradkov, A. L. (2000) Stabilization of invariant sets for nonlinear non-affine systems. Automatica, 36(11):1709–1715.
  • [13] Song, Q. and Song, Y.-D. (2014) Generalized pi control design for a class of unknown nonaffine systems with sensor and actuator faults. Systems & Control Letters, 64:86–95.
  • [14] Tombul, G. S., Banks, S. P., and Akturk, N. (2009) Sliding mode control for a class of non-affine nonlinear systems. Nonlinear Analysis: Theory, Methods & Applications, 71(12):e1589–e1597.
  • [15] Wang, Z.-W., Chen, X., and Huang, Y.-S. (2013) Decentralised direct adaptive fuzzy control for a class of large-scale nonaffine nonlinear systems and application to ahs. International Journal of Systems Science, 44(2):321– 328.
  • [16] Yang, X., Liu, D., Wei, Q., and Wang, D. (2015) Direct adaptive control for a class of discrete-time unknown nonaffine nonlinear systems using neural networks. International Journal of Robust and Nonlinear Control, 25(12):1844–1861.
  • [17] Young, A., Cao, C., Hovakimyan, N., and Lavretsky, E. (2006) An adaptive approach to nonaffine control design for aircraft applications. In: AIAA Guidance, Navigation and Control Conference and Exhibit, 21-24 August 2006, Keystone, CO. AIAA 2006–6343.
  • [18] Yurkevich, V. D. (2011) Output regulation of pulse-width-modulated nonlinear nonaffine-in-control systems via singular perturbation. IFAC Proceedings Volumes, 44(1):1374–1379.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42b351ef-c045-433f-a588-25bc8b01434b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.