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Abstract: The Lyapunov redesign method is basically used for
robust stabilization of nonlinear systems with an affine structure. In
this paper, for the first time, by suggestion of a simple but effective
idea, this approach is developed for robust stabilization of non-affine
quadratic polynomial systems in the presence of uncertainties and
external disturbances. In the proposed method, according to the
upper bound of an uncertain term, a quadratic polynomial is con-
structed and with respect to the position of the roots of this poly-
nomial, the additional feedback law is designed for robustness of the
quadratic polynomial system. The proposed technique is also used
for robust stabilizing of a magnetic ball levitation system. When the
coil current is the control input of the magnetic ball levitation sys-
tem, equations of this system are increasingly nonlinear with respect
to control input and have quadratic polynomial structure. The ef-
fectiveness of the proposed control law is also demonstrated through
computer simulations.
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1. Introduction

Recently, stabilization of non-affine systems has attracted increasing attention.
Indeed, the state space equations of many of physical systems (like active mag-
netic bearings systems, flight control etc.) have non-affine structure (Shiriaev
and Fradkov, 2000; Gutierrez and Ro, 2005; Young et al., 2006; Tombul et al.,
2009; Yurkevich, 2011). These systems display nonlinearities with respect to the
control inputs. If the control input appears linearly in the state-space equations,
the system is called affine and the Lyapunov-based stabilization methods (like
sliding mode, backstepping, control Lyapunov function and etc.) are proposed
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exclusively for nonlinear affine systems. The controller design for non-affine
systems is a more complicated task.

There are three general approaches in designing a controller for non-affine
systems. The first approach is to transform the non-affine system into an affine
structure by a nonlinear transformation and to use the stabilization methods for
nonlinear affine systems (Tombul et al., 2009; Meng et al., 2014). However, for
obtaining a nonlinear transformation, an accurate model of the system is needed.
Therefore, the main problem of this approach is leakage of the robustness. In
addition to that, such an approach has some problems that may lead to weak
performance and even system instability (Tombul et al., 2009). The second
approach consists in application of the intelligent control methods like fuzzy
control, neural networks, etc. Since these methods are not basically model-
based and they do not need any accurate system model, they are extensively
used in numerous studies (Ge and Zhang, 2003; Labiod and Guerra, 2007; Liu
and Wang, 2007; Chien et al., 2011; Boulkroune et al., 2012; Wang et al., 2013;
Yang et al., 2015; Dai et al., 2014). The third approach is to control the system in
its non-affine structure and to use the nonlinear control techniques such as CLF,
passivity based control, etc. Because of the complex structure of the non-affine
systems, only few papers were published with consideration of this approach
(Shiriaev and Fradkov, 2000; Moulay and Perruquetti, 2005; Binazadeh et al.,
2015). Although the design of robust controllers following this approach is also
an important task, there are very few papers in this regard.

Among the robust stabilizing methods, Lyapunov redesign method is an
effective and useful method for robust stabilization of nonlinear systems in the
presence of matched uncertainties and external disturbances. This method has
been basically presented for nonlinear systems with affine structure. In this
method, after stabilization of the nominal system (with nominal controller), by
adding an additional term to the nominal control law, robust stabilization of
the uncertain system is guaranteed (Khalil, 2002). To the best knowledge of the
authors, there is no work, reported in the literature, on extending this method
for non-affine quadratic polynomial systems.

In this paper, an effective idea is suggested for extending the Lyapunov
redesign method for robust stabilization of non-affine quadratic polynomial sys-
tems. In the proposed method, according to the upper bound of uncertainties,
a quadratic polynomial is constructed and with respect to the position of the
roots of this polynomial, the additional term is designed. Moreover, in order to
show the applicability of the proposed approach, it is used in designing a robust
stabilization control law for the magnetic ball levitation system.

Magnetic levitation systems have many applications, like super-fast magnetic
train, high accuracy positioning systems etc. These systems are inherently un-
stable and nonlinear and have noticeable uncertainty. Magnetic ball levitation
system is one of such systems. In this system, a magnetic ball is suspended
by the electromagnetic force from a coil to a specific reference. When the coil
voltage is considered as the control input, state-space equations of this system
are in an affine form. Most of the presented control algorithms for the magnetic
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levitation system are based on the voltage mode control (Bonivento et al., 2003;
Shen, 2002). However, some limitations of system’s performance are imposed in
the voltage mode control, which can be removed by considering the coil current
as the control input (Gutierrez and Ro, 2005). In this case, state equations
of the system have a non-affine quadratic polynomial structure and controller
design is more difficult. Gutierrez and Ro (2005) proposed an SM controller for
a non-affine magnetic servo levitation system based on a modified sliding condi-
tion. However, this approach is applicable in special cases and also the problem
is not discussed constructively for quadratic polynomial systems. In Binazadeh
et al. (2015), a new version of sliding mode controller was suggested for a class
of non-affine quadratic polynomial systems and the proposed method applied for
robust stabilization of the magnetic ball levitation system. In the present paper,
this problem is solved by extending the Lyapunov redesign method. Moreover,
computer simulations are performed to verify the effectiveness of the proposed
method. Briefly, the main contributions of this paper are as follows:

(1) Extending the Lyapunov redesign method for non-affine quadratic poly-
nomial systems.

(2) Considering the effect of external disturbances and model uncertainties.

(3) Asymptotic stabilization of magnetic ball levitation system in the current
mode.

2. Problem statement

Consider the nonlinear quadratic polynomial system (1) which is a non-affine
system:

ẋ = f0(x) + f1(x)u + f2(x)u
2 + ω(x, u, t) (1)

where x ∈ D ⊂ R (0 ∈ D) is the state vector, u ∈ R is control input,
fi : Rn → R (for i=0,1,2) are continuous vector functions, and f0(0) = 0.
Moreover, ω(x, u, t) is a nonlinear unknown vector function that may arise from
model reduction, inaccurate modelling, external disturbances or parameter un-
certainties that exist in all practical systems. It is assumed that the upper
bound of ω(x, u, t) is known:

‖ω(x, u, t)‖ ≤ η

where η is a positive constant. Because of the term u2, this system has nonlin-
earity with respect to its control input and therefore is a non-affine system.

The task is to design a robust asymptotic stabilizing control law for system
(1). For this purpose, first the controller for the nominal systems (i.e., system
(1) with ω = 0) is designed (which guarantees the asymptotic stability of the
closed-loop nominal system). Then, by considering the uncertainties and exter-
nal disturbances (i.e., ω 6= 0), the additional term is designed to achieve the
asymptotic stability for the closed-loop system (1).



376 T. Binazadeh and M. A. Rahgoshay

Considering ω = 0, the nominal system is as follows:

ẋ = f0(x) + f1(x)u + f2(x)u
2. (2)

Definition 1 Considering the continuous positive definite Lyapunov function
(V (x) : D → R+, V (0) = 0), the functions ā(x), b̄(x) and c̄(x) are defined as
follows (∂V/∂x is a row vector):

ā(x) =
∂V

∂x
f2 , b̄(x) =

∂V

∂x
f1 , c̄(x) =

∂V

∂x
f0.

Lemma 1 System (2) is asymptotically stabilizable if there exists a control law
u = ϕ(x) : D → R such that u(0) = 0 and according to the converse Lyapunov
theorem (Khalil, 2002) there exists a continuous positive definite Lyapunov func-
tion (V (x) : D → R+, V (0) = 0) so that for all (x 6= 0) ∈ D

V̇ =
∂V

∂x
(f0 + f1ϕ+ f2ϕ

2) = ā(x)ϕ2 + b̄(x)ϕ + c̄(x) < 0.

The following control law, which guarantees asymptotic stabilization (i.e., V̇ (x) =
∂V/∂x(f0+f1ϕ+f2ϕ

2) < 0) of the nominal system (2) was proposed in Moulay
and Perruquetti (2005):

unominal = ϕ(x) =

{
(−b̄(x)+

√
b̄(x)2−4ā(x)(c̄(x)+φ(x)))

2ā(x) if x 6= 0

0 if x = 0
(3)

where φ(x) is a positive definite function and satisfies b̄2(x) − 4ā(x)c̄(x) ≥
4ā(x)φ(x).

Now the task is to design the feedback law υ(x) in such a way that the robust
control law u = ϕ(x) + υ(x) guarantees stabilization of the non-affine system
(1) in the presence of ω 6= 0 .

3. Extending the Lyapunov redesign method for non-affine

quadratic polynomial system

In this section, a novel robust approach is proposed for non-affine quadratic
polynomial systems based on the Lyapunov redesign method. The additional
control component υ(x) may be designed in such a way that the new control
law u = ϕ(x) + υ(x) leads to robust stabilization of the nonlinear uncertain
system (1). For this purpose, consider the system (1) and apply the control law
u = ϕ(x) + υ(x). Therefore:

ẋ = f0(x) + f1(x)(ϕ + υ) + f2(x)(ϕ + υ)2 + ω(x, u, t)
= f0 + f1ϕ+ f2ϕ

2

︸ ︷︷ ︸

k1(x)

+ f1υ + f2υ
2 + 2f2ϕυ + ω(x, u, t)

︸ ︷︷ ︸

k2(x)

. (4)
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Considering the Lyapunov function of the nominal system for the uncertain
system, we have

V̇ (x) =
∂V

∂x
ẋ =

∂V

∂x
k1(x) +

∂V

∂x
k2(x)

whereas as shown in Moulay and Perruquetti (2005),

∂V

∂x
k1(x) < −γ (‖x‖)

(where γ (‖x‖) is a class K function). The purpose is to choose υ(x) such that

∂V

∂x
k2(x) ≤ 0,

which leads to
∂V

∂x
k1(x) +

∂V

∂x
k2(x) < −γ (‖x‖)

and guarantees the asymptotic stability of the closed-loop uncertain system (4).
Since,∂V

∂x
k2(x) is a quadratic polynomial expression in terms of υ, according to

the upper bound of ω, one has:

∂V

∂x
(f1υ+f2υ

2+2f2ϕυ+ω(x, u, t)) ≤ ∂V

∂x
(f1υ+f2υ

2+2f2ϕυ)+

∥
∥
∥
∥

∂V

∂x

∥
∥
∥
∥
η. (5)

In the above inequality, the expression in the right-hand side is a quadratic
polynomial, with respect to υ(x). According to the position of the root of this
polynomial, the additional controller υ(x) may be designed such that the signum
of the resulting parabola for the proposed υ(x) be non-positive. This approach
guarantees ∂V

∂x
k2(x) ≤ 0. In the following section, this idea is explained in detail

by its application in the magnetic ball levitation system.

4. Robust stabilization of magnetic ball levitation system

The following figure (Fig.1) shows the scheme of the magnetic ball levitation
system. In this system, magnetic ball is suspended by electromagnetic force from
a coil toward a specific reference. When the coil voltage (e) is considered as
the control input, state equations of this system are in an affine form. However,
if the coil current (i) is considered as the control input, state equations of the
system have a non-affine quadratic polynomial structure and controller design
is more difficult. There are some limitations of system’s performance, which are
imposed in the voltage mode control, and which can be removed by considering
the coil current as the control input.

State equations of the magnetic ball levitation system are as follows (Bi-
nazadeh et al., 2015):

{
ẋ1 = x2

ẋ2 = g − k0

(l0+x1+xref )2
u2 + ω1(x, u, t)

(6)



378 T. Binazadeh and M. A. Rahgoshay

Figure 1. Schematic diagram of the magnetic ball levitation system

where x1 is the distance between the magnetic ball and a reference position xref ,
x2 is the velocity of the ball, u is the coil current, g is the earth gravity and k0 , l0
are nominal values of the physical parameters of the coil. Also, ω1(x, u, t) is a
nonlinear function, resulting from inaccurate modelling, parameter uncertainties
or external disturbances. Suppose that |ω1| ≤ η1 where η1 is a known positive
constant.

Considering the equations (6) with respect to the structure of (1), one has:

f0 =

[
x2

g

]

, f1 =

[
0
0

]

, f2 =

[
0

− k0

(l0+x1+xref )2

]

, ω =

[
0
ω1

]

.

The Lyapunov function V (x) = αx2
1 + x2

2, α > 0 was considered in Moulay
and Perruquetti (2005) for the nominal system (6) in the case when ω1 = 0 and
it was shown that

∂V (x)

∂x
k1(x) < −γ (‖x‖)

with the following controller:

unominal = ϕ(x)

= − |l0 + x1 + xref | sgn(x2)
√

(αx1 + g)(1 + βsgn(x2))/k0
(7)

where β ∈
(
0 1

)
. Now, for ω1 6= 0, using the Lyapunov function of the

nominal system (V (x) = αx2
1 + x2

2), one has:

V̇ =
∂V

∂x
(f0 + f2ϕ

2)
︸ ︷︷ ︸

k1(x)

+
∂V

∂x
(f2υ

2 + (2f2ϕ)υ + ω
︸ ︷︷ ︸

k2(x)

).
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The term of the control law υ(x) should be chosen such that ∂V
∂x

k2(x) ≤ 0:

∂V

∂x
k2(x) =

[
2αx1 2x2

]








[
0

−k0

(l0+x1+xref )2

]

︸ ︷︷ ︸

f2

υ(υ + 2ϕ) +

[
0
ω1

]

︸ ︷︷ ︸

ω








(8)

=
−2k0x2

(l0 + x1 + xref )2
υ2 − 4x2ϕk0

|l0 + x1 + xref |2
υ + 2x2ω1.

By inserting ϕ from (7) into (8) and considering |ω1| ≤ η1, one has:

∂V

∂x
k2(x) ≤

−2k0x2

(l0 + x1 + xref )2
υ2 + 2η1 |x2|

+
4k0 |x2|

|l0 + x1 + xref |

√

(αx1 + g)(1 + βsgn(x2))

k0
υ

= |x2| k3(x) (9)

where

k3(x) =

−2k0sgn(x2)

(l0 + x1 + xref )2
υ2 + 2η1 +

4k0
|l0 + x1 + xref |

√

(αx1 + g)(1 + βsgn(x2))

k0
υ.

Now, according to the sign of x2, two cases may be considered.
Case (1): Assume x2 > 0, thus k3 = k31, where:

k31 =
−2k0

(l0 + x1 + xref )2
︸ ︷︷ ︸

a1(x)

υ2 +
4k0

|l0 + x1 + xref |

√

(αx1 + g)(1 + β)

k0
︸ ︷︷ ︸

b1(x)

υ+ 2η1
︸︷︷︸

c1(x)

(10)

and k31 is a quadratic polynomial in terms of υ and its coefficients are a1(x), b1(x)
and c1(x). For this polynomial ∆1 = b21 − 4a1c1 is always positive, thus k31 has
two real roots α1(x) and α2(x)(assume α1(x) < α2(x)). Choosing υ(x) > α2(x)
or υ(x) < α1(x) makes k31 negative. One selection of υ(x) is as υ(x) = α2(x)+ρ
where ρ is a positive function constant and α2(x) is as follows:

α2(x) =

|l0 + x1 + xref | (
√

(αx1 + g) (1 + β) /k0 +
√

[(αx1 + g) (1 + β) + η1] /k0).

(11)

Case (2): Assume x2 < 0, thus k3 = k32, where:

k32 =
+2k0

(l0 + x1 + xref )2
︸ ︷︷ ︸

a2(x)

υ2 +
4k0

|l0 + x1 + xref |

√

(αx1 + g)(1− β)

k0
︸ ︷︷ ︸

b2(x)

υ+ 2η1
︸︷︷︸

c2(x)

. (12)
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In this case

∆2 = 16k0 [(αx1 + g)(1− β)− η1] /(l0 + x1 + xref )
2.

In order to make ∆2 positive, the condition x1 >
(
η1k

2
0

/
(1 − β)− g

)
/α should

be satisfied. Since the region of study should include the origin, thus the term
(
η1k

2
0

/
(1− β)− g

)
should be negative. For small β (i.e., β ≈ 0), the uncertain-

ties with the condition η1 < g/k20 are acceptable and practical considerations
show that this assumption is reasonable. In this situation, k32 has two real roots
ᾱ1(x) and ᾱ2(x), therefore choosing ᾱ1(x) < υ(x) < ᾱ2(x) makes it negative.
Hence, in this case υ(x) may be chosen as υ(x) = ᾱ2(x)−ρ. If ρ is a small enough
positive constant, it can guarantee that the inequality ᾱ1(x) < υ < ᾱ2(x) is sat-
isfied:

ᾱ2(x) =

|l0 + x1 + xref | (−
√

(αx1 + g) (1− β) /k0 +
√

[(αx1 + g) (1− β)− η1] /k0).

(13)

Therefore, the robust control law u(x) is obtained as;

u(x) =

{
ϕ(x) + α2(x) + ρ x2 > 0
ϕ(x) + ᾱ2(x)− ρ x2 < 0

(14)

which guarantees robust asymptotic stability of the closed-loop system (6).

Remark 1 In the control law (14), ρ is a small enough positive constant, α2(x)
and ᾱ2(x) are functions of x1, which are independent of the value of x2. More-
over, ϕ(x) depends on x1 and the sgn(x2). Therefore, the proposed controller
is not dependent on the value of x2 and only needs to know whether the ball ve-
locity is positive or negative, which can be established according to the changes
in the value of ball displacement measurement. Therefore, for practical imple-
mentation, there is no need to dispose of the ball velocity measurement, which
is a crucial point, and it is not assumed that the state vector of the system (2)
is measurable and only the measurability of the first state is sufficient.

5. Computer simulations

In this section, computer simulations are reported, in order to show the per-
formance of the proposed controller. In this regard, the proposed controller is
compared with the controller given in Binazadeh et al.(2015). For simulations,
k0 = 1, l0 = 0.01, xref = 0m,ω1 = 0.5 sin(10t), ρ = 0.01 and η1 = 0.5 are
chosen. Time histories of the state variables are shown in Figs. 2 and 3. These
figures illustrate the ability of the proposed controller of asymptotic stabiliza-
tion of the state variables in the presence of uncertainties and also the better
characteristics of time response of the state variables, displayed by the proposed
controller (in terms of settling time and steady state error) in comparison with
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the reference controller from Binazadeh et al. (2015). Moreover, in Fig. 4,
the time response of the proposed control input (u = ϕ(x) + υ(x)) and of the
controller given in Binazadeh et al. (2015) are demonstrated. As it is seen, the
designed control law deals effectively with the uncertainties and guarantes the
asymptotic stability of the state variables with lower chattering.

Figure 2. Time history of x1(t) in the closed-loop system: (a) with the proposed
controller (b) with the controller given in Binazadeh et al. (2015)

6. Conclusions

In this paper, a robust controller was designed based on the Lyapunov redesign
technique for non-affine quadratic polynomial systems. The Lyapunov redesign
technique is basically considered for systems with affine structure. In this paper
this method was developed for non-affine quadratic polynomial systems and
practically illustrated for the magnetic ball levitation system. The simulation
results reveal that the proposed controller can robustly stabilize the magnetic
ball levitation system.
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