Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A color image encryption scheme is investigated by integrating the semi-tensor product compressive sensing (STP-CS) with the quaternion discrete fractional Krawtchouk transform (QDFrKT). To process the color components of plaintext image as a whole, the discrete fractional Krawtchouk transform (DFrKT) is popularized into the quaternion domain and the color image is secured by the QDFrKT. The image matrices are compressed with the discrete wavelet transform (DWT) and the STP measurement matrix. Then the compressed matrices represented by quaternion algebra are re-encrypted by the double random phase encoding and the quaternion DFrKT. Subsequently, the nonlinear hyperchaotic Lorenz system is applied to pixel diffusion to obtain the encrypted image. The proposed reconstruction algorithm based on the grouping iterative reweighted least squares (GIRLS) can resume the decryption image with high precision. The efficiency, security and robustness of the image compression encryption algorithm for color images are evaluated.
Czasopismo
Rocznik
Tom
Strony
435--453
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
autor
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
autor
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
autor
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
Bibliografia
- [1] HU L.L., CHEN M.X., WANG M.M., ZHOU N.R., A multi-image encryption scheme based on block compressive sensing and nonlinear bifurcation diffusion, Chaos, Solitons & Fractals 188, 2024: 115521. https://doi.org/10.1016/j.chaos.2024.115521
- [2] PAK C., HUANG L.L., A new color image encryption using combination of the 1D chaotic map, Signal Processing 138, 2017: 129-137. https://doi.org/10.1016/j.sigpro.2017.03.011
- [3] MALIK D.S., SHAH T., Color multiple image encryption scheme based on 3D-chaotic maps, Mathematics and Computers in Simulation 178, 2020: 646-666. https://doi.org/10.1016/j.matcom.2020.07.007
- [4] GAO X.Y., MOU J., XIONG L., SHA Y.W., YAN H.Z., CAO Y.H., A fast and efficient multiple images encryption based on single-channel encryption and chaotic system, Nonlinear Dynamics 108(1), 2022: 613-636. https://doi.org/10.1007/s11071-021-07192-7
- [5] WU G.C., DENG Z.G., BALEANU D., ZENG D.Q., New variable-order fractional chaotic systems for fast image encryption, Chaos 29(8), 2019: 083103. https://doi.org/10.1063/1.5096645
- [6] ZHENG J.Y., LIU L.F., Novel image encryption by combining dynamic DNA sequence encryption and the improved 2D logistic sine map, IET Image Processing 14(11), 2020: 2310-2320. https://doi.org/10.1049/iet-ipr.2019.1340
- [7] NIE Z., LIU Z.X., HE X.T., GONG L.H., Image compression and encryption algorithm based on advanced encryption standard and hyper-chaotic system, Optica Applicata 49(4), 2019: 545-558.https://doi.org/10.37190/oa190402
- [8] WANG X.Y., CHEN S.N., ZHANG Y.Q., A chaotic image encryption algorithm based on random dynamic mixing, Optics and Laser Technology 138, 2021: 106837. https://doi.org/10.1016/j.optlastec. 2020.106837
- [9] GUO Z., CHEN S.H., ZHOU L., GONG L.H., Optical image encryption and authentication scheme with computational ghost imaging, Applied Mathematical Modelling 131, 2024: 49-66. https://doi.org/10.1016/j.apm.2024.04.012
- [10] LIU J.L., ZHANG M., TONG X.J., WANG Z., Image compression and encryption algorithm based on 2D compressive sensing and hyperchaotic system, Multimedia Systems 28(2), 2022: 595-610. https://doi.org/10.1007/s00530-021-00859-6
- [11] HUANG X.L., DONG Y.X., YE G.D., SHI Y., Meaningful image encryption algorithm based on compressive sensing and integer wavelet transform, Frontiers of Computer Science 17(3), 2023: 173804. https://doi.org/10.1007/s11704-022-1419-8
- [12] CHAI X.L., FU J.Y., GAN Z.H., LU Y., ZHANG Y.S., An image encryption scheme based on multi-objective optimization and block compressed sensing, Nonlinear Dynamics 108(3), 2022: 2671-2704. https://doi.org/10.1007/s11071-022-07328-3
- [13] BABACAN S.D., MOLINA R., KATSAGGELOS A.K., Bayesian compressive sensing using Laplace priors, IEEE Transactions on Image Processing 19(1), 2010: 53-63. https://doi.org/10.1109/TIP. 2009.2032894
- [14] NI R.J., WANG F., WANG J., HU Y.H., Multi-image encryption based on compressed sensing and deep learning in optical gyrator domain, IEEE Photonics Journal 13(3), 2021: 7800116. https://doi.org/10.1109/JPHOT.2021.3076480
- [15] GONG L.H., LUO H.X., Dual color images watermarking scheme with geometric correction based on quaternion FrOOFMMs and LS-SVR, Optics and Laser Technology 167, 2023: 109665. https:// doi.org/10.1016/j.optlastec.2023.109665
- [16] CHAI P.F., LUO X.Q., ZHANG Z.C., Image fusion using quaternion wavelet transform and multiple features, IEEE Access 5, 2017: 6724-6734. https://doi.org/10.1109/ACCESS.2017.2685178
- [17] YU Y.B., ZHANG Y.L., YUAN S.F., Quaternion-based weighted nuclear norm minimization for color image denoising, Neurocomputing 332, 2019: 283-297. https://doi.org/10.1016/j.neucom.2018. 12.034
- [18] ZHOU N.R., TONG L.J., ZOU W.P., Multi-image encryption scheme with quaternion discrete fractional Tchebyshev moment transform and cross-coupling operation, Signal Processing 211, 2023: 109107. https://doi.org/10.1016/j.sigpro.2023.109107
- [19] SHAO Z.H., SHANG Y.Y, TONG Q.B., DING H., ZHAO X.X., FU X.Y., Multiple color image encryption and authentication based on phase retrieval and partial decryption in quaternion gyrator domain, Multimedia Tools and Applications 77(19), 2018: 25821-25840. https://doi.org/10.1007/s11042-018-5818-7
- [20] CHEN B.J., YU M., TIAN Y.H., LI L.D., WANG D.C., SUN X.M., Multiple-parameter fractional quaternion Fourier transform and its application in colour image encryption, IET Image Processing 12(12), 2018: 2238-2249. https://doi.org/10.1049/iet-ipr.2018.5440
- [21] YE H.S., DAI J.Y., WEN S.X., GONG L.H., ZHANG W.Q., Color image encryption scheme based on quaternion discrete multi-fractional random transform and compressive sensing, Optica Applicata 51(3), 2021: 349-364. https://doi.org/10.37190/oa210304
- [22] LIU L.R., LEI M.L., BAO H.B., Event-triggered quantized quasisynchronization of uncertain quaternion-valued chaotic neural networks with time-varying delay for image encryption, IEEE Transactions on Cybernetics 53(5), 2023: 3325-3336. https://doi.org/10.1109/TCYB.2022.3176013
- [23] LIU X.L., HAN G.N., WU J.S., SHAN Z.H., COATRIEUX G., SHU H.Z., Fractional Krawtchouk transform with an application to image watermarking, IEEE Transactions on Signal Processing 65(7), 2017: 1894-1908. https://doi.org/10.1109/TSP.2017.2652383
- [24] LIU X.L., WU Y.F., ZHANG H., WU J.S., ZHANG L.M., Quaternion discrete fractional Krawtchouk transform and its application in color image encryption and watermarking, Signal Processing 189, 2021: 108275. https://doi.org/10.1016/j.sigpro.2021.108275
- [25] NAN, S.X., FENG, X.F., WU, Y.F., ZHANG H., Remote sensing image compression and encryption based on block compressive sensing and 2D-LCCCM, Nonlinear Dynamics 108(3), 2022: 2705-2729. https://doi.org/10.1007/s11071-022-07335-4
- [26] WEI J.J., ZHANG M., TONG X.J., Multi-image compression–encryption algorithm based on compressed sensing and optical encryption, Entropy 24(6), 2022: 784. https://doi.org/10.3390/e24060784
- [27] XU Q.Y., SUN K.H., CAO C., ZHU C.X., A fast image encryption algorithm based on compressive sensing and hyperchaotic map, Optics and Lasers in Engineering 121, 2019: 203-214. https://doi.org/ 10.1016/j.optlaseng.2019.04.011
- [28] XU Q.Y., SUN K.H., HE S.B., ZHU C.X., An effective image encryption algorithm based on compressive sensing and 2D-SLIM, Optics and Lasers in Engineering 134, 2020: 106178. https://doi.org/10.1016/j.optlaseng.2020.106178
- [29] GAN Z.H., CHAI X.L., BI J.Q., CHEN X.H., Content-adaptive image compression and encryption via optimized compressive sensing with double random phase encoding driven by chaos, Complex and Intelligent Systems 8(3), 2022: 2291-2309. https://doi.org/10.1007/s40747-022-00644-6
- [30] MAN Z.L., LI J.Q., DI X.Q., LIU X., ZHOU J., WANG J., ZHANG X.X., A novel image encryption algorithm based on least squares generative adversarial network random number generator, Multimedia Tools and Applications 80(18), 2021: 27445-27469. https://doi.org/10.1007/s11042-021-10979-w
- [31] WANG X.Y., ZHANG J.J., CAO G.H., An image encryption algorithm based on ZigZag transform and LL compound chaotic system, Optics and Laser Technology 119, 2019: 105581. https://doi.org/10.1016/j.optlastec.2019.105581
- [32] SETYANINGSIH E., WARDOYO R., SARI A.K., Securing color image transmission using compression-encryption model with dynamic key generator and efficient symmetric key distribution, Digital Communications and Networks 6(4), 2020: 486-503. https://doi.org/10.1016/j.dcan.2020.02.001
- [33] SINGH A.K, CHATTERJEE K., SINGH A., An image security model based on chaos and DNA cryptography for IIoT images, IEEE Transactions on Industrial Informatics 19(2), 2023: 1957-1964. https://doi.org/10.1109/TII.2022.3176054
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42afaccc-cf98-4764-ade7-ada34d0bd821
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.