PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although in mathematical sense the actual meaning of Galilei‟s experiments conducted at leaning tower of Pisa is that he failed to detect any measurable impact of composition of matter on gravitating bodies, the obvious failure is mistakenly interpreted as experimental confirmation of lack of the impact instead. Galilei did not really perform internal validity checks of his experiments, because he did not ensure that he actually measured what he was supposed to measure. However, a modern experiment devised to test the impact of large mass on gravitational phenomena has revealed presence of (formerly unanticipated) extraneous frequency decrease in rays coming from Taurus A, when they passed close to our Sun (i.e. near occultation). The experiment has effectively confirmed that density of matter of the mass source of locally dominant gravitational field (which was our Sun‟s field) affects gravitational interactions happening on equipotential surfaces surrounding gravity center of the field. Also very similar experiment involving radio waves, which too exhibited (formerly unexpected) frequency decrease when they traveled along practically equipotential surface of Earth, has reaffirmed that conclusion. Hence contrary to Galilei, effects of nonradial (i.e. tangential and/or binormal) components of radial gravitational force fields depend (inversely) on (equipotential exposure to) the, assumed as practically constant and uniformly distributed, density of matter of the mass source of the local field.
Rocznik
Strony
89--105
Opis fizyczny
Bibliogr. 38 poz., wz.
Twórcy
autor
  • Department of Science and Mathematics Education, Southern University and A & M College, Baton Rouge, LA 70813, USA
Bibliografia
  • [1] Jeffreys H., Jeffreys B., Methods of mathematical physics. Cambridge; Cambridge Univ. Press, 2001, p. 202.
  • [2] Czajko J., Chaos, Solit. Fract. 11 (2000) 2001-2016.
  • [3] Beiser A, Concepts of modern physics. New York: McGraw-Hill, 1973, p. 67ff.
  • [4] Czajko J., Appl. Phys. Res. 3(1) (2011) 2-7.
  • [5] Czajko J., Stud. Math. Sci. 7(2) (2013) 40-54.
  • [6] Czajko J., Stud. Math. Sci. 7(2) (2013) 25-39.
  • [7] Duschek A., Vorlesungen über höhere Mathematik IV. Wien: Springer, 1961, pp. 229, 237.
  • [8] Sokolnikoff I. S., Sokolnikoff E. S., Higher mathematics for engineers and physicists. New York: McGraw-Hill, 1941, p. 218.
  • [9] Czajko J., Chaos Solit. Fract. 20 (2004) 683-700.
  • [10] Czajko J., Chaos, Solit. Fract. 11 (2000) 1983-1992.
  • [11] Thirring W., Problems of classical dynamical systems. CERN 75-8. Geneva: CERN, 1975, p.8ff.
  • [12] Czajko J., Chaos Solit. Fract. 19 (2004) 479-502.
  • [13] Bondi H., Eur. J. Phys. 14 (1993) 1-6.
  • [14] R. von Eötvös, Pekár D., Fekete E., Ann. Phys. (Leipzig) 68 (1922) 11-66.
  • [15] Ingard U., Kraushaar W. L., Introduction to mechanics, matter and waves. Reading, MA: Addison-Wesley, 1960, p. 40.
  • [16] Fischbach E., et al., Phys. Rev. Lett. 56 (1986) 3-6.
  • [17] Fischbach E., et al., Phys. Rev. Lett. 57 (1986) 1959.
  • [18] Baggott J., Farewell to reality. How fairytale physics betrays the search for scientific truth. London: Constable, 2013, p. 12 – compare also pp. 17, 20. International Letters of Chemistry, Physics and Astronomy 11(2) (2014) 89-105 105
  • [19] Campbell N. R., Mathematical Physics. [p.46-79 in: Weaver J. H. (Ed.) The World of Physics III. New York: Simon & Schuster, 1987].
  • [20] Einstein A., Elementare Überlegungen zur Interpretation der Grundlagen der Quanten- Mechanik. [p. 33-40 in: Collective work: Scientific papers presented to Max Born. Edinburgh: Oliver & Boyd, see p. 34].
  • [21] Aharonov Y., Bohm D., Phys. Rev. 115 (1959) 485-491.
  • [22] Trammel G. T., Phys. Rev. B134 (1964) 1183-1184.
  • [23] Peshkin M., Tonomura A., The Aharonov-Bohm effect. Part 1: Theory. Springer, Berlin, 1989, pp. 4ff, 20ff.
  • [24] H. von Helmholtz, Vorlesungen über theoretische Physik I. Leipzig: Barth, (1903) p. 2.
  • [25] Melosh H. J., et al., Science 340 (2013) 1552-1555.
  • [26] Wheeler J. A., Time today. [pp. 21-50 in: Namiki M et al. (Eds.) Quantum physics chaos theory and cosmology. Woodbury, NY: AIP Press, 1996].
  • [27] Szekeres G., Nature 220 (1968) 1116-1168.
  • [28] Sadeh D., Knowles S. H., Yaplee B. S., Science 159 (1968) 307-308.
  • [29] Sadeh D., Knowles S., Au B., Science 161 (1968) 567-569.
  • [30] Sadeh D., Hollinger J. P., Knowles S. H., Science 162 (1968) 897-898.
  • [31] Einstein A., The Foundations of the General Theory of Relativity [pp. 111-164 in: H.A. Lorentz et al. The principle of relativity. New York: Dover, 1923, see Einstein‟s disclaimer on p. 161].
  • [32] Merat P., Astron. Astrophys. 32 (1974) 471-475.
  • [33] Dyson F., Nature 106 (1921) 786-787.
  • [34] Weast R. C. (Ed.) Handbook of Chemistry and Physics. 51st ed. Cleveland, OH: The Chemical Rubber Co., 1970, p. F145.
  • [35] Kellog O. D., Foundations of potential theory. Berlin: Springer, 1929, p. 77f.
  • [36] Geroch R., General relativity from A to B. Chicago: The Univ. of Chicago Press, 1978, pp. 166, 171.
  • [37] O‟Neill B, Semi-Riemannian geometry with applications to relativity. NewYork: Academic Press, 1983, p. 171.
  • [38] Kvasz L., Acta Phys. Slov. 62(6) (2012) 519-614; see pp. 522, 524.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42af5542-de10-45c5-9852-81f9c5533af1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.