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Abstract. An edge coloring ϕ of a graph G is called an Mi-edge coloring if |ϕ(v)| ≤ i for
every vertex v of G, where ϕ(v) is the set of colors of edges incident with v. Let Ki(G) denote
the maximum number of colors used in an Mi-edge coloring of G. In this paper we establish
some bounds of K2(G), present some graphs achieving the bounds and determine exact values
of K2(G) for dense graphs.
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1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. If G is a graph,
then V (G) and E(G) stand for the vertex set and edge set of G, respectively. The
subgraph of a graph G induced by U ⊆ V (G) is denoted by G[U ]. The set of vertices
of G adjacent to a vertex v ∈ V (G) is denoted by NG(v). The cardinality of this set,
denoted degG(v), is called the degree of v. As usual ∆(G) and δ(G) stand for the
maximum and minimum degree among vertices of G.

An edge coloring of a graph G is an assignment of colors to the edges of G, one
color to each edge. So, any mapping ϕ from E(G) onto a non-empty set is an edge
coloring of G. The set of colors used in an edge coloring ϕ of G is denoted by ϕ(G), i.e.,
ϕ(G) := {ϕ(e) : e ∈ E(G)}. For any vertex v ∈ V (G), let ϕ(v) denote the set of colors
of edges incident with v, i.e., ϕ(v) := {ϕ(vu) : vu ∈ E(G)}. An edge coloring ϕ of G is
an Mi-edge coloring if at most i colors appears at any vertex of G, i.e., |ϕ(v)| ≤ i for
every vertex v ∈ V (G). The maximum number of colors used in an Mi-edge coloring
of G is denoted by Ki(G).

The concept of an Mi-edge coloring was introduced by J. Czap [2]. In [1] authors
establish a tight bound of K2(G) depending on the size of a maximum matching in G.
In [2] and [3], the exact values of K2(G) for subcubic graphs and complete graphs are
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determined. In [4] it is determined K2(G) for cacti, trees, graph joins and complete
multipartite graphs.

In this paper we establish some bounds of K2(G) and determine exact values of
K2(G) for dense graphs.

2. AUXILIARY RESULTS

Let ϕ be an M2-edge coloring of a graph G. For a set U ⊆ V (G), let ϕ(U) denote the
set of colors of edges incident with vertices of U . Thus, ϕ(U) := ∪v∈Uϕ(v).
Lemma 2.1. Let ϕ be an M2-edge coloring of a graph G and let U be a non-empty
subset of V (G). Then the following statements hold:
(i) |ϕ(U)| ≤ |U |+ c, where c denotes the number of connected components of G[U ],
(ii) |{ϕ(e) : e ∈ E(G[U ])}| = 1 whenever |ϕ(U)| = |U |+ 1 and G[U ] is 2-connected.
Proof. First suppose that G[U ] is a connected graph. Denote the vertices of U by
u1, u2, . . . , uk in such a way that the set Xi := {u1, u2, . . . , ui} induces a connected
subgraph of G for every i ∈ {1, 2, . . . , k}. As G[Xi] is connected for i ≥ 2, there is j
(1 ≤ j < i) such that uiuj is an edge of G. Therefore, ϕ(uiuj) ∈ ϕ(Xi−1) ∩ ϕ(ui) and

|ϕ(Xi)| = |ϕ(Xi−1) ∪ ϕ(ui)| = |ϕ(Xi−1)|+ |ϕ(ui))| − |ϕ(Xi−1) ∩ ϕ(ui)|
≤ |ϕ(Xi−1)|+ 2− 1 = |ϕ(Xi−1)|+ 1.

Clearly, |ϕ(X1)| = |ϕ(u1)| ≤ 2 = |X1|+ 1. Thus, by induction we get

|ϕ(Xi)| ≤ |ϕ(Xi−1)|+ 1 ≤ (|Xi−1|+ 1) + 1 = |Xi|+ 1

and consequently |ϕ(U)| = |ϕ(Xk)| ≤ |Xk|+ 1 = |U |+ 1.
If G[U ] is a disconnected graph, then the set U can be partitioned into disjoint

subsets U1, U2, . . . , Uc in such a way that G[Ui] is a connected component of G[U ]
for every i ∈ {1, 2, . . . , c}. Therefore,

|ϕ(U)| = |ϕ(∪c
i=1Ui)| ≤

c∑
i=1
|ϕ(Ui)| ≤

c∑
i=1

(|Ui|+ 1) = |U |+ c.

Now suppose that G[U ] is 2-connected and |{ϕ(e) : e ∈ E(G[U ])}| > 1. Then
there are edges uw and vw in E(G[U ]) such that ϕ(uw) 6= ϕ(vw). Therefore, ϕ(w) ⊆
ϕ(u)∪ϕ(v) ⊆ ϕ(U−{w}) and consequently ϕ(U) = ϕ(U−{w}). AsG[U ] is 2-connected,
G[U − {w}] is connected and by (i)

|ϕ(U − {w})| ≤ |U − {w}|+ 1 = |U |.

Hence |ϕ(U)| ≤ |U |, which completes the proof.

A matching in a graph is a set of pairwise nonadjacent edges. A matching is
perfect if every vertex of the graph is incident with exactly one edge of the matching.
A maximum matching is a matching that contains the largest possible number of edges.
The number of edges in a maximum matching of a graph G is denoted by α(G).
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Lemma 2.2. Let ϕ be an M2-edge coloring of a graph G such that ϕ(u) ∩ ϕ(v) 6= ∅
for all u, v ∈ V (G). Then either |ϕ(G)| = 3 or |ϕ(G)| ≤ 1 + α(G).

Proof. Let F be a graph whose vertices are colors of the coloring ϕ (i.e., V (F ) = ϕ(G))
and vertices c1, c2 of F (colors of ϕ) are adjacent whenever there is a vertex w ∈ V (G)
such that ϕ(w) = {c1, c2}. Clearly, any two edges of F are adjacent. Therefore, F is
either a 3-cycle or a star. If F is a 3-cycle, then |ϕ(G)| = 3. If F is a star, then there
is a color c which appears at any vertex of G. Let H be a graph obtained from G by
removing all edges of color c and also removing all arisen isolated vertices. Evidently,
every component of H is monochromatic. Thus, |ϕ(G)| is not greater than the number
of components of H increased by 1. As each component of H has at least one edge,
the number of components of H is at most α(H). The graph H is a subgraph of G
and so α(H) ≤ α(G). Hence |ϕ(G)| ≤ 1 + α(G).

Let ϕ be an M2-edge coloring of a graph G. A set S, S ⊆ E(G), is rainbow if
no two edges of S are colored the same. Denote by R(ϕ) the family of all spanning
subgraphs of G whose edge sets are maximal rainbow sets. Evidently, |E(H)| = |ϕ(G)|
and ∆(H) ≤ 2 whenever H ∈ R(ϕ).

Lemma 2.3. Let ϕ be an M2-edge coloring of a graph G. If δ(G) > 2 then R(ϕ)
contains an acyclic graph.

Proof. Suppose to the contrary that any graph belonging to R(ϕ) contains a cycle.
Let H ∈ R(ϕ) be a graph with the minimum number of cycles. Let C be a cycle
of H and let u be a vertex of C. As δ(G) > 2, degG(u) ≥ 3. Let e1, e2 and e3 be
distinct edges of G incident with u such that {e1, e2} ⊂ E(C) and e3 /∈ E(C). As
{e1, e2} ⊂ E(C) ⊂ E(H), ϕ(e1) 6= ϕ(e2). Since |ϕ(u)| ≤ 2, there is i ∈ {1, 2} such
that ϕ(e3) = ϕ(ei). Clearly, if e3 = uv, then degH(v) < 2. Now, it is easy to see that
the spanning subgraph of G with the edge set

(
E(H)− {ei}

)
∪ {e3} belongs to R(ϕ)

and contains less cycles than H, a contradiction.

Lemma 2.4. Let ϕ be an M2-edge coloring of a graph G and let U be a non-empty
subset of V (G) such that ϕ(u) ∩ ϕ(v) = ∅ for all distinct vertices u, v ∈ U . Then

|ϕ(G)| ≤ |U |+ |V (G)| − 1
2
∑
u∈U

degG(u).

Proof. As ϕ(u)∩ϕ(v) = ∅ for all distinct vertices u, v ∈ U , the set U is an independent
set of vertices in G. Thus, there is a spanning subgraph H of G belonging to R(ϕ)
such that degH(u) = |ϕ(u)| for each vertex u ∈ U . For any non-negative integer i put
Ni := {w ∈ V (G) − U : |NG(w) ∩ U | = i}. Since |ϕ(w)| ≤ 2 and ϕ(u) ∩ ϕ(w) 6= ∅
for any edge uw ∈ E(G), Ni = ∅ for every i ≥ 3. Thus the sets U , N0, N1 and
N2 form a partition of V (G). So, |V (G)| = |U | + |N0| + |N1| + |N2|. Moreover,∑

u∈U degG(u) = 1 · |N1|+ 2 · |N2|. Combining these equations we get

2|N0|+ |N1| = 2|V (G)| − 2|U | −
∑
u∈U

degG(u).
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Let H ′ be subgraph of H induced by V (H) − U . Then, degH′(w) ≤ 2 − i for any
vertex w ∈ Ni, 0 ≤ i ≤ 2, because ϕ(w) contains at least i colors belonging to ϕ(U).
Therefore,

2|E(H ′)| =
∑

v∈V (H′)

degH′(v) ≤ 2 · |N0|+ 1 · |N1|+ 0 · |N2|

= 2|V (G)| − 2|U | −
∑
u∈U

degG(u).

Hence

|ϕ(G)| = |E(H)| =
∑
u∈U

|ϕ(u)|+ |E(H ′)| ≤ 2|U |+ |E(H ′)|

≤ 2|U |+
(
|V (G)| − |U | − 1

2
∑
u∈U

degG(u)
)

= |U |+ |V (G)| − 1
2
∑
u∈U

degG(u),

which completes the proof.

Lemma 2.5. Let G be a connected graph of order at least 2. If any vertex in U ⊂ V (G)
is a cut-vertex of G then there is an M2-edge coloring ϕ of G such that |ϕ(G)| = 1+ |U |
and |ϕ(v)| = 2 if and only if v ∈ U .

Proof. Denote by u1, u2, . . . , uk vertices of the set U . Put U0 := ∅ and Ui := Ui−1∪{ui},
for i ∈ {1, 2, . . . k}.

Let ϕ0 be a mapping from E(G) to {0}. As ϕ0(e) = 0, for every edge e ∈ E(G),
|ϕ0(G)| = 1 = 1 + |U0| and |ϕ0(v)| = 2 if and only if v ∈ U0.

Now suppose that a mapping ϕi from E(G) onto {0, 1, . . . , i} is an M2-edge coloring
of G such that |ϕi(G)| = 1 + |Ui| and |ϕi(v)| = 2 if and only if v ∈ Ui. As ui+1 /∈ Ui,
|ϕi(ui+1)| = 1. Since ui+1 is a cut-vertex of G, the graph G−ui+1 is disconnected. Let
C be a chosen connected component of G− ui+1 and H be a subgraph of G induced
by V (C)∪{ui+1}. Consider a mapping ϕi+1 from E(G) onto {0, 1, . . . , i+ 1} given by

ϕi+1(e) =
{
i+ 1 if ϕi(e) ∈ ϕi(ui+1) and e ∈ E(H),
ϕi(e) otherwise.

Evidently, |ϕi+1(v)| = |ϕi(v)| for every vertex v ∈ V (G)− {ui+1}, and |ϕi+1(ui+1)| =
1 + |ϕi(ui+1)|. Therefore, ϕi+1 is an M2-edge coloring of G such that |ϕi+1(G)| =
1+ |Ui+1| and |ϕi+1(v)| = 2 if and only if v ∈ Ui+1. Thus, by induction we get a desired
coloring.

Lemma 2.6. Let G be a graph with δ(G) ≥ 2. Then the line graph L(G) of G satisfies

K2(L(G)) ≥ |V (G)|.
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Proof. All edges of G incident with a vertex v induce a subgraph K(v) of L(G), which
is isomorphic to a complete graph of order degG(v). Subgraphs K(v), for all v ∈ V (G),
form a decomposition of L(G), where any edge of G (i.e., vertex of L(G)) belongs to
precisely two distinct subgraphs. For every vertex v ∈ V (G) color all edges of K(v)
with color cv. It is easy to see that this gives an M2-edge coloring of L(G) using |V (G)|
colors, so K2(L(G)) ≥ |V (G)|.

3. BOUNDS

It is easy to see that for disjoint graphs G and H we have

K2(G ∪H) = K2(G) +K2(H).

Therefore, it is sufficient to consider connected graphs.
A vertex cover of a graph G is a subset U of V (G) such that every edge of G is

incident with a vertex in U and it is said to be connected if the subgraph of G induced
by U is connected. The smallest number of vertices in any connected vertex cover of
G is denoted by βc(G). Note that the set V (G)− U is independent if and only if U is
a vertex cover of G.
Theorem 3.1. Let G be a connected graph. Then K2(G) ≤ 1 + βc(G).
Proof. Let U be a connected vertex cover of a graph G such that |U | = βc(G). Let
ϕ be an M2-edge coloring of G which uses K2(G) colors, i.e., |ϕ(G)| = K2(G). Since
U is a vertex cover of G, ϕ(G) = ϕ(U), and the desired inequality follows from
Lemma 2.1.

The following result presents some graphs achieving the bound 1 + βc(G).
Theorem 3.2. Let I be an independent set of a connected graph G satisfying
(i) |V (G)− I| ≥ 2,
(ii) G[V (G)− I] is a connected subgraph of G,
(iii) if u ∈ V (G)− I is not a cut vertex of G[V (G)− I], then there is a vertex v ∈ I

adjacent to u,
(iv) degG(v) ≤ 2 for all v ∈ I.
Then

K2(G) = 1 + |V (G)| − |I|.
Proof. According to (ii), V (G)−I is a connected vertex cover of G, and by Theorem 3.1,
K2(G) ≤ 1 + |V (G)− I| = 1 + |V (G)| − |I|.

On the other hand, let U be a subset of V (G)− I containing vertices that have no
neighbor in I. According to Lemma 2.5, there is an M2-edge coloring ϕ of G[V (G)− I]
such that |ϕ(G[V (G) − I])| = 1 + |U | and |ϕ(v)| = 2 if and only if v ∈ U . For
every vertex w ∈ V (G) − (I ∪ U) let cw be a new color, i.e., cw does not belong to
ϕ(G[V (G)− I]). The edge coloring ψ of G is defined in the following way

ψ(e) =
{
ϕ(e) if e ∈ E(G[V (G)− I]),
cw if e /∈ E(G[V (G)− I]) and e is incident with w.
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It is easy to see that ψ is an M2-edge coloring of G which uses 1+|U |+|V (G)−(I∪U)| =
1 + |V (G)| − |I| colors, i.e., K2(G) ≥ 1 + |V (G)| − |I|.

Let Vj(G) denote the set of vertices of degree j in G.
If T is a tree different from a star, then the set V1(T ) satisfies the conditions of

Theorem 3.2. Thus, we immediately have the following assertion (the assertion is
evident for stars).

Corollary 3.3. If T is a tree on at least two vertices, then

K2(T ) = 1 + |V (T )| − |V1(T )|.

Similarly, V2(O) is an independent set of a maximal outerplanar graph O on at
least four vertices. So, we have

Corollary 3.4. Let O be a maximal outerplanar graph on at least four vertices.
If every vertex of degree at least 3 is adjacent to a vertex of degree 2, then

K2(O) = 1 + |V (O)| − |V2(O)|.

One can see that a maximal outerplanar graph in the previous result may be
replaced by a maximal 2-degenerate graph (including a 2-tree).

We are also able to prove the following result.

Corollary 3.5. Let G be a Hamiltonian graph with ∆(G) ≤ 3. Then the line graph
L(G) of G satisfies

K2(L(G)) = |V (G)|.

Proof. If ∆(G) < 3, then G is a cycle and L(G) is isomorphic to G. Clearly, the claim
holds in this case. So, we will suppose that ∆(G) = 3.

Let C be a Hamilton cycle of G. Set U = E(C) and I = E(G) − U . Evidently,
|U | = |V (G)|, 1 ≤ |I| ≤ |V (G)|/2 and the vertex set of L(G) is partitioned into
disjoint non-empty subsets U and I. Let H be a subgraph of L(G) induced by U . As
H is a cycle and I is an independent set of vertices in L(G) (a matching of G), U is
a connected vertex cover of L(G). According to Theorem 3.1, K2(L(G)) ≤ 1 + |U |.

Suppose that there is an M2-edge coloring ϕ of L(G) which uses 1 + |U | colors. In
this case, ϕ(U) = 1 + |U | and the subgraph H of L(G) induced by U is 2-connected.
By Lemma 2.1, all edges of H have the same color c. Since any edge of L(G) not
belonging to H is incident with a vertex of I, |ϕ(I)| ≥ |U |. As ϕ is an M2-edge coloring
and |I| ≤ |V (G)|/2 = |U |/2, |ϕ(x)| = 2 for each x ∈ I, c /∈ ϕ(I), ϕ(x) ∩ ϕ(y) = ∅
for x 6= y, {x, y} ⊂ I, and |I| = |V (G)|/2 (i.e., G is regular of degree 3). Let e be
an edge of C (an element of U) and let e1, e2 be distinct edges of I adjacent to e.
Clearly, e and ei, i ∈ {1, 2}, are adjacent vertices of L(G) and so ϕ(e) ∩ ϕ(e1) 6= ∅,
ϕ(e) ∩ ϕ(e2) 6= ∅, and moreover the color c belongs to ϕ(e). This implies |ϕ(e)| ≥ 3,
a contradiction. Therefore, K2(L(G)) ≤ |U | = |V (G)|.

The opposite inequality follows from Lemma 2.6.

A set D ⊆ V (G) is called dominating in G, if for each v ∈ V (G)−D there exists
a vertex u ∈ D adjacent to v.
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Theorem 3.6. Let D be a dominating set of a graph G. If c denotes the number of
connected components of G[D], then

K2(G) ≤ c+ |D|+ α(G[V (G)−D]).

Proof. Let ϕ be an M2-edge coloring ofG which uses K2(G) colors, i.e., |ϕ(G)| = K2(G).
Let H be a graph obtained from G by removing all edges of colors belonging to ϕ(D)
and also removing all arisen isolated vertices. Evidently, every component of H is
monochromatic. Thus, the number of components of H increased by |ϕ(D)| is equal to
K2(G). As each component of H has at least one edge, the number of components of
H is at most α(H). Since H is a subgraph of G[V (G)−D], α(H) ≤ α(G[V (G)−D]).
Therefore,

K2(G) ≤ |ϕ(D)|+ α(H) ≤ |ϕ(D)|+ α(G[V (G)−D]).

By Lemma 2.1, |ϕ(D)| ≤ c+ |D| and the desired inequality follows.

Let G ∪H denote the disjoint union of graphs G and H. Let h be a mapping from
V (H) to V (G). By G∪h H we denote the graph G∪H together with all edges joining
each vertex u ∈ V (H) and h(u) ∈ V (G).

Let G be a graph of order n. Let nH denote the disjoint union of n copies of
a graph H. If h : V (nH)→ V (G) is a mapping such that the image of any vertex of
ith copy of H is the ith vertex of G, then G ∪h nH is called a corona of G with H
and it is denoted by G�H.

Theorem 3.7. Let G be a graph without isolated vertices. Let h be a surjective
mapping from the vertex set of a graph H onto V (G) such that there exists a maximum
matching M of H satisfying: h(u) = h(v) for every edge uv ∈ E(H)−M . If c denotes
the number of connected components of G, then

K2(G ∪h H) = c+ |V (G)|+ α(H).

Proof. Clearly, V (G) is a dominating set of G ∪h H. According to Theorem 3.6,
K2(G ∪h H) ≤ c+ |V (G)|+ α(H).

On the other hand, let G1, G2, . . . , Gc be connected components of G. For every
vertex v ∈ V (G), let Hv be a subgraph of H induced by {u ∈ V (H) : h(u) = v}.
Consider an edge coloring ψ of G ∪h H defined by

ψ(e) =


i if e ∈ E(Gi),
e if e ∈M ,
v if e is incident with a vertex of Hv and e /∈M .

It is easy to see that ψ is an M2-edge coloring of G∪hH which uses c+α(H) + |V (G)|
colors, i.e., K2(G ∪h H) ≥ c+ |V (G)|+ α(H).

The corona of a connected graph G on at least two vertices with a non-empty
graph H satisfies conditions of Theorem 3.7, therefore, we have the following corollary.
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Corollary 3.8. Let G be a connected graph on at least two vertices. For any non-empty
graph H, the corona of G with H satisfies

K2(G�H) = 1 + |V (G)|
(
1 + α(H)

)
.

The Cartesian product G1�G2 of graphs G1, G2 is a graph whose vertices are all
ordered pairs [v1, v2], where v1 ∈ V (G1), v2 ∈ V (G2), and two vertices [v1, v2], [u1, u2]
are joined by an edge in G1�G2 if and only if either v1 = u1 and v2, u2 are adjacent
in G2, or v1, u1 are adjacent in G1 and v2 = u2.

Corollary 3.9. Let G be a graph with ∆(G) = |V (G)| − 1. If |V (G)| > 1 then

K2(G�K2) = 2 + |V (G)|.

Proof. Let u be a saturated vertex of a graph G (i.e., degG(u) = |V (G)|−1). Let v1 and
v2 be vertices of K2. Denote by G∗ the subgraph of G�K2 induced by {[u, v1], [u, v2]}.
Similarly, the subgraph of G�K2 induced by V (G�K2)−{[u, v1], [u, v2]} denote by H.
Evidently, G∗ is isomorphic to K2 and α(H) = |V (G)| − 1. Let h be a mapping
from V (H) onto V (G∗) given by h([w, vi]) = [u, vi], i ∈ {1, 2}. Clearly, the graph
G∗ ∪h H is isomorphic to G�K2. As G∗ ∪h H satisfies the conditions of Theorem 3.7,
we immediately get the assertion.

It is easy to see that K2(G) ≤ |V (G)|. For graphs with δ(G) > 2 we can establish
the better bound.

Theorem 3.10. Let G be a graph with δ(G) ≥ 3. Then

K2(G) ≤
⌈

2
δ(G)

(
1 +

⌈
|V (G)|

2

⌉)⌉
+
⌊
|V (G)|

2

⌋
− 1.

Proof. Suppose that G is a counterexample of order n. Then there is an M2-edge
coloring ϕ of G using k + bn/2c colors, where k =

⌈
2(1 + dn/2e)/δ(G)

⌉
. According to

Lemma 2.3, there is an acyclic graph H ∈ R(ϕ). Then

2|E(H)| = 2|V2(H)|+ |V1(H)| ≤ 2|V2(H)|+ (n− |V2(H)|) = |V2(H)|+ n.

Therefore
|V2(H)| ≥ 2|E(H)| − n = 2(k + bn/2c)− n ≥ 2k − 1.

As ∆(H) ≤ 2 and H is acyclic, any component of H is a path. Thus, there is
an independent set U of H such that U ⊂ V2(H) and |U | = k. Since E(H) is a rainbow
set of ϕ, ϕ(u) ∩ ϕ(v) = ∅ for all distinct vertices u, v ∈ U . By Lemma 2.4, we have

|ϕ(G)| ≤ |U |+ n− 1
2
∑
u∈U

degG(u) ≤ k + n− 1
2kδ(G).

As k =
⌈
2(1 + dn/2e)/δ(G)

⌉
, kδ(G) ≥ 2(1 + dn/2e) and

|ϕ(G)| ≤ k + n− (1 + dn/2e) ≤ k + bn/2c − 1,

a contradiction.
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Some line graphs achieve the bound established in previous theorem.

Corollary 3.11. Let G be a bipartite graph with parts A and B such that degG(u) =
p ≥ 3, for every vertex u ∈ A, and degG(v) = 2, for every vertex v ∈ B except for
a vertex w ∈ B when degG(w) = 3 if p|A| is odd. Then the line graph L(G) of G
satisfies

K2(L(G)) = |V (G)|.

Proof. Set t = |A|. Then |V (L(G))| = |E(G)| = pt and |B| = b|E(G)|/2c = bpt/2c.
As δ(L(G)) = p and d2(1 + dpt/2e)/pe = t+ 1, according to Theorem 3.10, we have

K2(L(G)) ≤ t+ bpt/2c = |A|+ |B| = |V (G)|.

The opposite inequality follows from Lemma 2.6.

For dense graphs we have the following result.

Theorem 3.12. Let G be a graph with δ(G) >
⌈
|V (G)|

2

⌉
. Then

K2(G) = 1 +
⌊
|V (G)|

2

⌋
.

Proof. According to Theorem 3.10, K2(G) ≤ 1 + b|V (G)|/2c.
On the other hand, G is Hamiltonian because δ(G) > d|V (G)|/2e. Thus, α(G) =

b|V (G)|/2c. Let M be a maximum matching of G. Color all edges of E(G) − M
with one color and every edge of M with a different color. It is easy to see that this
gives an M2-edge coloring of G using 1 + |M | colors. Therefore, K2(G) ≥ 1 + |M | =
1 + b|V (G)|/2c, as required.
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