M2**-EDGE COLORINGS OF DENSE GRAPHS**

Jaroslav Ivančo

Communicated by Mariusz Meszka

Abstract. An edge coloring φ of a graph *G* is called an M_i -edge coloring if $|\varphi(v)| \leq i$ for every vertex *v* of *G*, where $\varphi(v)$ is the set of colors of edges incident with *v*. Let $\mathcal{K}_i(G)$ denote the maximum number of colors used in an M_i -edge coloring of G . In this paper we establish some bounds of $\mathcal{K}_2(G)$, present some graphs achieving the bounds and determine exact values of $\mathcal{K}_2(G)$ for dense graphs.

Keywords: edge coloring, dominating set, dense graphs.

Mathematics Subject Classification: 05C15.

1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. If *G* is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of G , respectively. The subgraph of a graph *G* induced by $U \subseteq V(G)$ is denoted by $G[U]$. The set of vertices of *G* adjacent to a vertex $v \in V(G)$ is denoted by $N_G(v)$. The cardinality of this set, denoted deg_{*G*}(*v*), is called the degree of *v*. As usual $\Delta(G)$ and $\delta(G)$ stand for the maximum and minimum degree among vertices of *G*.

An edge coloring of a graph *G* is an assignment of colors to the edges of *G*, one color to each edge. So, any mapping φ from $E(G)$ onto a non-empty set is an edge coloring of *G*. The set of colors used in an edge coloring φ of *G* is denoted by φ (*G*), i.e., $\varphi(G) := {\varphi(e) : e \in E(G)}$. For any vertex $v \in V(G)$, let $\varphi(v)$ denote the set of colors of edges incident with *v*, i.e., $\varphi(v) := {\varphi(vu) : vu \in E(G)}$. An edge coloring φ of *G* is an M_i *-edge coloring* if at most *i* colors appears at any vertex of *G*, i.e., $|\varphi(v)| \leq i$ for every vertex $v \in V(G)$. The maximum number of colors used in an M_i -edge coloring of *G* is denoted by $\mathcal{K}_i(G)$.

The concept of an M_i -edge coloring was introduced by J. Czap [2]. In [1] authors establish a tight bound of $\mathcal{K}_2(G)$ depending on the size of a maximum matching in *G*. In [2] and [3], the exact values of $\mathcal{K}_2(G)$ for subcubic graphs and complete graphs are

c AGH University of Science and Technology Press, Krakow 2016 603

determined. In [4] it is determined $\mathcal{K}_2(G)$ for cacti, trees, graph joins and complete multipartite graphs.

In this paper we establish some bounds of $\mathcal{K}_2(G)$ and determine exact values of $\mathcal{K}_2(G)$ for dense graphs.

2. AUXILIARY RESULTS

Let φ be an M₂-edge coloring of a graph *G*. For a set $U \subset V(G)$, let $\varphi(U)$ denote the set of colors of edges incident with vertices of *U*. Thus, $\varphi(U) := \cup_{v \in U} \varphi(v)$.

Lemma 2.1. *Let* φ *be an* M_2 -edge coloring of a graph G and let U be a non-empty subset of $V(G)$. Then the following statements hold:

(i) $|\varphi(U)| \leq |U| + c$, where c denotes the number of connected components of $G[U]$, (ii) $|\{\varphi(e) : e \in E(G[U])\}| = 1$ *whenever* $|\varphi(U)| = |U| + 1$ *and* $G[U]$ *is* 2*-connected.*

Proof. First suppose that *G*[*U*] is a connected graph. Denote the vertices of *U* by u_1, u_2, \ldots, u_k in such a way that the set $X_i := \{u_1, u_2, \ldots, u_i\}$ induces a connected subgraph of *G* for every $i \in \{1, 2, \ldots, k\}$. As $G[X_i]$ is connected for $i \geq 2$, there is *j* $(1 \leq j < i)$ such that $u_i u_j$ is an edge of *G*. Therefore, $\varphi(u_i u_j) \in \varphi(X_{i-1}) \cap \varphi(u_i)$ and

$$
|\varphi(X_i)| = |\varphi(X_{i-1}) \cup \varphi(u_i)| = |\varphi(X_{i-1})| + |\varphi(u_i)| - |\varphi(X_{i-1}) \cap \varphi(u_i)|
$$

\n
$$
\leq |\varphi(X_{i-1})| + 2 - 1 = |\varphi(X_{i-1})| + 1.
$$

Clearly, $|\varphi(X_1)| = |\varphi(u_1)| \leq 2 = |X_1| + 1$. Thus, by induction we get

$$
|\varphi(X_i)| \le |\varphi(X_{i-1})| + 1 \le (|X_{i-1}| + 1) + 1 = |X_i| + 1
$$

and consequently $|\varphi(U)| = |\varphi(X_k)| \leq |X_k| + 1 = |U| + 1$.

If $G[U]$ is a disconnected graph, then the set U can be partitioned into disjoint subsets U_1, U_2, \ldots, U_c in such a way that $G[U_i]$ is a connected component of $G[U]$ for every $i \in \{1, 2, \ldots, c\}$. Therefore,

$$
|\varphi(U)| = |\varphi(\cup_{i=1}^{c} U_i)| \le \sum_{i=1}^{c} |\varphi(U_i)| \le \sum_{i=1}^{c} (|U_i| + 1) = |U| + c.
$$

Now suppose that $G[U]$ is 2-connected and $|\{\varphi(e): e \in E(G[U])\}| > 1$. Then there are edges *uw* and *vw* in $E(G[U])$ such that $\varphi(uw) \neq \varphi(vw)$. Therefore, $\varphi(w) \subseteq$ $\varphi(u) \cup \varphi(v) \subseteq \varphi(U - \{w\})$ and consequently $\varphi(U) = \varphi(U - \{w\})$. As *G*[*U*] is 2-connected, $G[U - \{w\}]$ is connected and by (i)

$$
|\varphi(U - \{w\})| \le |U - \{w\}| + 1 = |U|.
$$

Hence $|\varphi(U)| \leq |U|$, which completes the proof.

 \Box

A *matching* in a graph is a set of pairwise nonadjacent edges. A matching is *perfect* if every vertex of the graph is incident with exactly one edge of the matching. A *maximum matching* is a matching that contains the largest possible number of edges. The number of edges in a maximum matching of a graph *G* is denoted by $\alpha(G)$.

Lemma 2.2. Let φ be an M₂-edge coloring of a graph *G* such that $\varphi(u) \cap \varphi(v) \neq \emptyset$ *for all* $u, v \in V(G)$ *. Then either* $|\varphi(G)| = 3$ *or* $|\varphi(G)| \leq 1 + \alpha(G)$ *.*

Proof. Let *F* be a graph whose vertices are colors of the coloring φ (i.e., $V(F) = \varphi(G)$) and vertices c_1, c_2 of *F* (colors of φ) are adjacent whenever there is a vertex $w \in V(G)$ such that $\varphi(w) = \{c_1, c_2\}$. Clearly, any two edges of *F* are adjacent. Therefore, *F* is either a 3-cycle or a star. If *F* is a 3-cycle, then $|\varphi(G)| = 3$. If *F* is a star, then there is a color *c* which appears at any vertex of *G*. Let *H* be a graph obtained from *G* by removing all edges of color *c* and also removing all arisen isolated vertices. Evidently, every component of *H* is monochromatic. Thus, $|\varphi(G)|$ is not greater than the number of components of *H* increased by 1. As each component of *H* has at least one edge, the number of components of *H* is at most $\alpha(H)$. The graph *H* is a subgraph of *G* and so $\alpha(H) \leq \alpha(G)$. Hence $|\varphi(G)| \leq 1 + \alpha(G)$. \Box

Let φ be an M₂-edge coloring of a graph *G*. A set *S*, $S \subseteq E(G)$, is *rainbow* if no two edges of *S* are colored the same. Denote by $\mathcal{R}(\varphi)$ the family of all spanning subgraphs of *G* whose edge sets are maximal rainbow sets. Evidently, $|E(H)| = |\varphi(G)|$ and $\Delta(H) \leq 2$ whenever $H \in \mathcal{R}(\varphi)$.

Lemma 2.3. Let φ be an M₂-edge coloring of a graph *G*. If $\delta(G) > 2$ then $\mathcal{R}(\varphi)$ *contains an acyclic graph.*

Proof. Suppose to the contrary that any graph belonging to $\mathcal{R}(\varphi)$ contains a cycle. Let $H \in \mathcal{R}(\varphi)$ be a graph with the minimum number of cycles. Let C be a cycle of *H* and let *u* be a vertex of *C*. As $\delta(G) > 2$, $\deg_G(u) \geq 3$. Let e_1, e_2 and e_3 be distinct edges of *G* incident with *u* such that $\{e_1, e_2\} \subset E(C)$ and $e_3 \notin E(C)$. As ${e_1, e_2}$ ⊂ *E*(*C*) ⊂ *E*(*H*), $\varphi(e_1) \neq \varphi(e_2)$. Since $|\varphi(u)| \leq 2$, there is $i \in \{1, 2\}$ such that $\varphi(e_3) = \varphi(e_i)$. Clearly, if $e_3 = uv$, then $\deg_H(v) < 2$. Now, it is easy to see that the spanning subgraph of *G* with the edge set $(E(H) - \{e_i\}) \cup \{e_3\}$ belongs to $\mathcal{R}(\varphi)$ and contains less cycles than *H*, a contradiction. \Box

Lemma 2.4. Let φ be an M₂-edge coloring of a graph G and let U be a non-empty *subset of* $V(G)$ *such that* $\varphi(u) \cap \varphi(v) = \emptyset$ *for all distinct vertices* $u, v \in U$ *. Then*

$$
|\varphi(G)|\leq |U|+|V(G)|-\frac{1}{2}\sum_{u\in U}\deg_G(u).
$$

Proof. As $\varphi(u) \cap \varphi(v) = \emptyset$ for all distinct vertices $u, v \in U$, the set U is an independent set of vertices in *G*. Thus, there is a spanning subgraph *H* of *G* belonging to $\mathcal{R}(\varphi)$ such that $\deg_H(u) = |\varphi(u)|$ for each vertex $u \in U$. For any non-negative integer *i* put $N_i := \{w \in V(G) - U : |N_G(w) \cap U| = i\}$. Since $|\varphi(w)| \leq 2$ and $\varphi(u) \cap \varphi(w) \neq \emptyset$ for any edge $uw \in E(G)$, $N_i = \emptyset$ for every $i \geq 3$. Thus the sets *U*, N_0 , N_1 and *N*₂ form a partition of *V*(*G*). So, $|V(G)| = |U| + |N_0| + |N_1| + |N_2|$. Moreover, $\sum_{u \in U} \deg_G(u) = 1 \cdot |N_1| + 2 \cdot |N_2|$. Combining these equations we get

$$
2|N_0| + |N_1| = 2|V(G)| - 2|U| - \sum_{u \in U} \deg_G(u).
$$

Let *H'* be subgraph of *H* induced by $V(H) - U$. Then, $\deg_{H'}(w) \leq 2 - i$ for any vertex $w \in N_i$, $0 \le i \le 2$, because $\varphi(w)$ contains at least *i* colors belonging to $\varphi(U)$. Therefore,

$$
2|E(H')| = \sum_{v \in V(H')} \deg_{H'}(v) \le 2 \cdot |N_0| + 1 \cdot |N_1| + 0 \cdot |N_2|
$$

= 2|V(G)| - 2|U| - $\sum_{u \in U} \deg_G(u)$.

Hence

$$
|\varphi(G)| = |E(H)| = \sum_{u \in U} |\varphi(u)| + |E(H')| \le 2|U| + |E(H')|
$$

\n
$$
\le 2|U| + (|V(G)| - |U| - \frac{1}{2} \sum_{u \in U} \deg_G(u))
$$

\n
$$
= |U| + |V(G)| - \frac{1}{2} \sum_{u \in U} \deg_G(u),
$$

which completes the proof.

Lemma 2.5. Let *G* be a connected graph of order at least 2. If any vertex in $U \subset V(G)$ *is a cut-vertex of G* then there is an M_2 -edge coloring φ of *G* such that $|\varphi(G)| = 1 + |U|$ *and* $|\varphi(v)| = 2$ *if and only if* $v \in U$ *.*

Proof. Denote by u_1, u_2, \ldots, u_k vertices of the set *U*. Put $U_0 := \emptyset$ and $U_i := U_{i-1} \cup \{u_i\}$, for $i \in \{1, 2, \ldots k\}.$

Let φ_0 be a mapping from $E(G)$ to $\{0\}$. As $\varphi_0(e) = 0$, for every edge $e \in E(G)$, $|\varphi_0(G)| = 1 = 1 + |U_0|$ and $|\varphi_0(v)| = 2$ if and only if $v \in U_0$.

Now suppose that a mapping φ_i from $E(G)$ onto $\{0, 1, \ldots, i\}$ is an M₂-edge coloring of *G* such that $|\varphi_i(G)| = 1 + |U_i|$ and $|\varphi_i(v)| = 2$ if and only if $v \in U_i$. As $u_{i+1} \notin U_i$, $|\varphi_i(u_{i+1})| = 1$. Since u_{i+1} is a cut-vertex of *G*, the graph $G - u_{i+1}$ is disconnected. Let *C* be a chosen connected component of $G - u_{i+1}$ and *H* be a subgraph of *G* induced by *V* (*C*) ∪ {*ui*+1}. Consider a mapping *ϕi*+1 from *E*(*G*) onto {0*,* 1*, . . . , i* + 1} given by

$$
\varphi_{i+1}(e) = \begin{cases} i+1 & \text{if } \varphi_i(e) \in \varphi_i(u_{i+1}) \text{ and } e \in E(H), \\ \varphi_i(e) & \text{otherwise.} \end{cases}
$$

Evidently, $|\varphi_{i+1}(v)| = |\varphi_i(v)|$ for every vertex $v \in V(G) - \{u_{i+1}\}\text{, and } |\varphi_{i+1}(u_{i+1})| =$ 1 + $|\varphi_i(u_{i+1})|$. Therefore, φ_{i+1} is an M₂-edge coloring of *G* such that $|\varphi_{i+1}(G)|$ = $1+|U_{i+1}|$ and $|\varphi_{i+1}(v)|=2$ if and only if $v \in U_{i+1}$. Thus, by induction we get a desired coloring. \Box

Lemma 2.6. Let *G* be a graph with $\delta(G) \geq 2$. Then the line graph $L(G)$ of *G* satisfies

$$
\mathcal{K}_2(L(G)) \geq |V(G)|.
$$

Proof. All edges of *G* incident with a vertex *v* induce a subgraph $K(v)$ of $L(G)$, which is isomorphic to a complete graph of order $\deg_G(v)$. Subgraphs $K(v)$, for all $v \in V(G)$, form a decomposition of $L(G)$, where any edge of *G* (i.e., vertex of $L(G)$) belongs to precisely two distinct subgraphs. For every vertex $v \in V(G)$ color all edges of $K(v)$ with color c_v . It is easy to see that this gives an M₂-edge coloring of $L(G)$ using $|V(G)|$ \Box colors, so $\mathcal{K}_2(L(G)) \geq |V(G)|$.

3. BOUNDS

It is easy to see that for disjoint graphs *G* and *H* we have

 $\mathcal{K}_2(G \cup H) = \mathcal{K}_2(G) + \mathcal{K}_2(H)$.

Therefore, it is sufficient to consider connected graphs.

A *vertex cover* of a graph *G* is a subset *U* of $V(G)$ such that every edge of *G* is incident with a vertex in *U* and it is said to be *connected* if the subgraph of *G* induced by *U* is connected. The smallest number of vertices in any connected vertex cover of *G* is denoted by $\beta_c(G)$. Note that the set $V(G) - U$ is independent if and only if *U* is a vertex cover of *G*.

Theorem 3.1. *Let G be a connected graph. Then* $\mathcal{K}_2(G) \leq 1 + \beta_c(G)$ *.*

Proof. Let *U* be a connected vertex cover of a graph *G* such that $|U| = \beta_c(G)$. Let φ be an M₂-edge coloring of *G* which uses $\mathcal{K}_2(G)$ colors, i.e., $|\varphi(G)| = \mathcal{K}_2(G)$. Since *U* is a vertex cover of *G*, $\varphi(G) = \varphi(U)$, and the desired inequality follows from Lemma 2.1. \Box

The following result presents some graphs achieving the bound $1 + \beta_c(G)$.

Theorem 3.2. *Let I be an independent set of a connected graph G satisfying*

- (i) $|V(G) I| \geq 2$,
- (ii) $G[V(G) I]$ *is a connected subgraph of* G *,*
- (iii) if $u \in V(G) I$ is not a cut vertex of $G[V(G) I]$, then there is a vertex $v \in I$ *adjacent to u,*
- (iv) deg_{*G*}(*v*) \leq 2 *for all* $v \in I$ *.*

Then

$$
\mathcal{K}_2(G) = 1 + |V(G)| - |I|.
$$

Proof. According to (ii), $V(G) - I$ is a connected vertex cover of *G*, and by Theorem 3.1, $\mathcal{K}_2(G) \leq 1 + |V(G) - I| = 1 + |V(G)| - |I|.$

On the other hand, let *U* be a subset of $V(G) - I$ containing vertices that have no neighbor in *I*. According to Lemma 2.5, there is an M₂-edge coloring φ of $G[V(G)-I]$ such that $|\varphi(G[V(G) - I])| = 1 + |U|$ and $|\varphi(v)| = 2$ if and only if $v \in U$. For every vertex $w \in V(G) - (I \cup U)$ let c_w be a new color, i.e., c_w does not belong to $\varphi(G[V(G)-I])$. The edge coloring ψ of *G* is defined in the following way

$$
\psi(e) = \begin{cases} \varphi(e) & \text{if } e \in E(G[V(G) - I]), \\ c_w & \text{if } e \notin E(G[V(G) - I]) \text{ and } e \text{ is incident with } w. \end{cases}
$$

 \Box

It is easy to see that ψ is an M₂-edge coloring of *G* which uses $1+|U|+|V(G)-(I\cup U)|=$ $1 + |V(G)| - |I|$ colors, i.e., $\mathcal{K}_2(G) \geq 1 + |V(G)| - |I|.$ \Box

Let $V_i(G)$ denote the set of vertices of degree *j* in *G*.

If *T* is a tree different from a star, then the set $V_1(T)$ satisfies the conditions of Theorem 3.2. Thus, we immediately have the following assertion (the assertion is evident for stars).

Corollary 3.3. *If T is a tree on at least two vertices, then*

$$
\mathcal{K}_2(T) = 1 + |V(T)| - |V_1(T)|.
$$

Similarly, $V_2(O)$ is an independent set of a maximal outerplanar graph O on at least four vertices. So, we have

Corollary 3.4. *Let O be a maximal outerplanar graph on at least four vertices. If every vertex of degree at least* 3 *is adjacent to a vertex of degree* 2*, then*

$$
\mathcal{K}_2(O) = 1 + |V(O)| - |V_2(O)|.
$$

One can see that a maximal outerplanar graph in the previous result may be replaced by a maximal 2-degenerate graph (including a 2-tree).

We are also able to prove the following result.

Corollary 3.5. *Let G be a Hamiltonian graph with* $\Delta(G) \leq 3$ *. Then the line graph L*(*G*) *of G satisfies*

$$
\mathcal{K}_2(L(G)) = |V(G)|.
$$

Proof. If $\Delta(G) < 3$, then *G* is a cycle and $L(G)$ is isomorphic to *G*. Clearly, the claim holds in this case. So, we will suppose that $\Delta(G) = 3$.

Let *C* be a Hamilton cycle of *G*. Set $U = E(C)$ and $I = E(G) - U$. Evidently, $|U| = |V(G)|$, $1 \leq |I| \leq |V(G)|/2$ and the vertex set of $L(G)$ is partitioned into disjoint non-empty subsets U and I . Let H be a subgraph of $L(G)$ induced by U . As *H* is a cycle and *I* is an independent set of vertices in $L(G)$ (a matching of *G*), *U* is a connected vertex cover of $L(G)$. According to Theorem 3.1, $\mathcal{K}_2(L(G)) \leq 1 + |U|$.

Suppose that there is an M₂-edge coloring φ of $L(G)$ which uses $1 + |U|$ colors. In this case, $\varphi(U) = 1 + |U|$ and the subgraph *H* of *L*(*G*) induced by *U* is 2-connected. By Lemma 2.1, all edges of *H* have the same color *c*. Since any edge of *L*(*G*) not belonging to *H* is incident with a vertex of *I*, $|\varphi(I)| \geq |U|$. As φ is an M₂-edge coloring and $|I| \leq |V(G)|/2 = |U|/2$, $|\varphi(x)| = 2$ for each $x \in I$, $c \notin \varphi(I)$, $\varphi(x) \cap \varphi(y) = \emptyset$ for $x \neq y$, $\{x, y\} \subset I$, and $|I| = |V(G)|/2$ (i.e., *G* is regular of degree 3). Let *e* be an edge of C (an element of U) and let e_1, e_2 be distinct edges of I adjacent to e . Clearly, *e* and e_i , $i \in \{1, 2\}$, are adjacent vertices of $L(G)$ and so $\varphi(e) \cap \varphi(e_1) \neq \emptyset$, $\varphi(e) \cap \varphi(e_2) \neq \emptyset$, and moreover the color *c* belongs to $\varphi(e)$. This implies $|\varphi(e)| \geq 3$, a contradiction. Therefore, $\mathcal{K}_2(L(G)) \leq |U| = |V(G)|$.

The opposite inequality follows from Lemma 2.6.

A set $D \subseteq V(G)$ is called *dominating* in *G*, if for each $v \in V(G) - D$ there exists a vertex $u \in D$ adjacent to *v*.

Theorem 3.6. *Let D be a dominating set of a graph G. If c denotes the number of connected components of G*[*D*]*, then*

$$
\mathcal{K}_2(G) \le c + |D| + \alpha(G[V(G) - D]).
$$

Proof. Let φ be an M₂-edge coloring of *G* which uses $\mathcal{K}_2(G)$ colors, i.e., $|\varphi(G)| = \mathcal{K}_2(G)$. Let *H* be a graph obtained from *G* by removing all edges of colors belonging to $\varphi(D)$ and also removing all arisen isolated vertices. Evidently, every component of *H* is monochromatic. Thus, the number of components of *H* increased by $|\varphi(D)|$ is equal to $\mathcal{K}_2(G)$. As each component of *H* has at least one edge, the number of components of *H* is at most $\alpha(H)$. Since *H* is a subgraph of $G[V(G) - D], \alpha(H) \leq \alpha(G[V(G) - D]).$ Therefore,

$$
\mathcal{K}_2(G) \le |\varphi(D)| + \alpha(H) \le |\varphi(D)| + \alpha(G[V(G)-D]).
$$

By Lemma 2.1, $|\varphi(D)| \leq c + |D|$ and the desired inequality follows.

Let $G \cup H$ denote the disjoint union of graphs G and H . Let h be a mapping from *V*(*H*) to *V*(*G*). By $G \cup_h H$ we denote the graph $G \cup H$ together with all edges joining each vertex $u \in V(H)$ and $h(u) \in V(G)$.

Let *G* be a graph of order *n*. Let *nH* denote the disjoint union of *n* copies of a graph *H*. If $h: V(nH) \to V(G)$ is a mapping such that the image of any vertex of *i*th copy of *H* is the *i*th vertex of *G*, then $G \cup_h nH$ is called a *corona* of *G* with *H* and it is denoted by $G \odot H$.

Theorem 3.7. *Let G be a graph without isolated vertices. Let h be a surjective mapping from the vertex set of a graph* H *onto* $V(G)$ *such that there exists a maximum matching M* of *H satisfying:* $h(u) = h(v)$ *for every edge* $uv \in E(H) - M$ *. If c* denotes *the number of connected components of G, then*

$$
\mathcal{K}_2(G \cup_h H) = c + |V(G)| + \alpha(H).
$$

Proof. Clearly, $V(G)$ is a dominating set of $G \cup_h H$. According to Theorem 3.6, $\mathcal{K}_2(G \cup_h H) \leq c + |V(G)| + \alpha(H).$

On the other hand, let G_1, G_2, \ldots, G_c be connected components of G . For every vertex $v \in V(G)$, let H_v be a subgraph of *H* induced by $\{u \in V(H) : h(u) = v\}.$ Consider an edge coloring ψ of $G \cup_h H$ defined by

$$
\psi(e) = \begin{cases} i & \text{if } e \in E(G_i), \\ e & \text{if } e \in M, \\ v & \text{if } e \text{ is incident with a vertex of } H_v \text{ and } e \notin M. \end{cases}
$$

It is easy to see that ψ is an M₂-edge coloring of $G \cup_h H$ which uses $c + \alpha(H) + |V(G)|$ colors, i.e., $\mathcal{K}_2(G \cup_h H) \geq c + |V(G)| + \alpha(H)$. \Box

The corona of a connected graph *G* on at least two vertices with a non-empty graph *H* satisfies conditions of Theorem 3.7, therefore, we have the following corollary.

Corollary 3.8. *Let G be a connected graph on at least two vertices. For any non-empty graph H, the corona of G with H satisfies*

$$
\mathcal{K}_2(G \odot H) = 1 + |V(G)|\big(1 + \alpha(H)\big).
$$

The *Cartesian product* $G_1 \square G_2$ of graphs G_1 , G_2 is a graph whose vertices are all ordered pairs $[v_1, v_2]$, where $v_1 \in V(G_1)$, $v_2 \in V(G_2)$, and two vertices $[v_1, v_2]$, $[u_1, u_2]$ are joined by an edge in $G_1 \square G_2$ if and only if either $v_1 = u_1$ and v_2 , u_2 are adjacent in G_2 , or v_1 , u_1 are adjacent in G_1 and $v_2 = u_2$.

Corollary 3.9. *Let G be a graph with* $\Delta(G) = |V(G)| - 1$ *. If* $|V(G)| > 1$ *then*

$$
\mathcal{K}_2(G \square K_2) = 2 + |V(G)|.
$$

Proof. Let *u* be a saturated vertex of a graph *G* (i.e., deg_{*G*}(*u*) = |*V*(*G*)|−1). Let *v*₁ and v_2 be vertices of K_2 . Denote by G^* the subgraph of $G\Box K_2$ induced by $\{[u, v_1], [u, v_2]\}.$ Similarly, the subgraph of $G\Box K_2$ induced by $V(G\Box K_2) - \{[u, v_1], [u, v_2]\}$ denote by *H*. Evidently, G^* is isomorphic to K_2 and $\alpha(H) = |V(G)| - 1$. Let *h* be a mapping from $V(H)$ onto $V(G^*)$ given by $h([w, v_i]) = [u, v_i], i \in \{1, 2\}$. Clearly, the graph $G^* \cup_h H$ is isomorphic to $G \square K_2$. As $G^* \cup_h H$ satisfies the conditions of Theorem 3.7, we immediately get the assertion. \Box

It is easy to see that $\mathcal{K}_2(G) \leq |V(G)|$. For graphs with $\delta(G) > 2$ we can establish the better bound.

Theorem 3.10. *Let G be a graph with* $\delta(G) \geq 3$ *. Then*

$$
\mathcal{K}_2(G) \le \left\lceil \frac{2}{\delta(G)} \left(1 + \left\lceil \frac{|V(G)|}{2} \right\rceil \right) \right\rceil + \left\lfloor \frac{|V(G)|}{2} \right\rfloor - 1.
$$

Proof. Suppose that *G* is a counterexample of order *n*. Then there is an M_2 -edge coloring φ of *G* using $k + \lfloor n/2 \rfloor$ colors, where $k = \lfloor 2(1 + \lceil n/2 \rceil)/\delta(G) \rfloor$. According to Lemma 2.3, there is an acyclic graph $H \in \mathcal{R}(\varphi)$. Then

$$
2|E(H)| = 2|V_2(H)| + |V_1(H)| \le 2|V_2(H)| + (n - |V_2(H)|) = |V_2(H)| + n.
$$

Therefore

$$
|V_2(H)| \ge 2|E(H)| - n = 2(k + \lfloor n/2 \rfloor) - n \ge 2k - 1.
$$

As $\Delta(H) \leq 2$ and *H* is acyclic, any component of *H* is a path. Thus, there is an independent set *U* of *H* such that $U \subset V_2(H)$ and $|U| = k$. Since $E(H)$ is a rainbow set of φ , $\varphi(u) \cap \varphi(v) = \emptyset$ for all distinct vertices $u, v \in U$. By Lemma 2.4, we have

$$
|\varphi(G)| \leq |U| + n - \frac{1}{2} \sum_{u \in U} \deg_G(u) \leq k + n - \frac{1}{2} k \delta(G).
$$

As $k = [2(1 + \lceil n/2 \rceil)/\delta(G)]$, $k\delta(G) \ge 2(1 + \lceil n/2 \rceil)$ and

$$
|\varphi(G)| \le k + n - (1 + \lceil n/2 \rceil) \le k + \lfloor n/2 \rfloor - 1,
$$

a contradiction.

Some line graphs achieve the bound established in previous theorem.

Corollary 3.11. Let G be a bipartite graph with parts A and B such that $\deg_G(u)$ $p \geq 3$ *, for every vertex* $u \in A$ *, and* $\deg_G(v) = 2$ *, for every vertex* $v \in B$ *except for a* vertex $w \in B$ when $\deg_G(w) = 3$ *if* $p|A|$ *is odd. Then the line graph* $L(G)$ *of G satisfies*

$$
\mathcal{K}_2(L(G)) = |V(G)|.
$$

Proof. Set $t = |A|$. Then $|V(L(G))| = |E(G)| = pt$ and $|B| = |E(G)|/2 = |pt/2|$. As $\delta(L(G)) = p$ and $\lceil 2(1 + \lceil pt/2 \rceil)/p \rceil = t + 1$, according to Theorem 3.10, we have

$$
\mathcal{K}_2(L(G)) \le t + \lfloor pt/2 \rfloor = |A| + |B| = |V(G)|.
$$

The opposite inequality follows from Lemma 2.6.

For dense graphs we have the following result.

Theorem 3.12. *Let G be a graph with* $\delta(G) > \left[\frac{|V(G)|}{2}\right]$ $\left[\frac{(G)}{2}\right]$. Then

$$
\mathcal{K}_2(G) = 1 + \left\lfloor \frac{|V(G)|}{2} \right\rfloor.
$$

Proof. According to Theorem 3.10, $\mathcal{K}_2(G) \leq 1 + ||V(G)||/2$.

On the other hand, *G* is Hamiltonian because $\delta(G) > |V(G)|/2$. Thus, $\alpha(G) =$ $|V(G)|/2$. Let *M* be a maximum matching of *G*. Color all edges of $E(G) - M$ with one color and every edge of *M* with a different color. It is easy to see that this gives an M₂-edge coloring of *G* using $1 + |M|$ colors. Therefore, $\mathcal{K}_2(G) \geq 1 + |M|$ $1+$ |*V*(*G*)|/2|, as required. \Box

Acknowledgments

This work was supported by the Slovak VEGA Grant 1/0652/12.

REFERENCES

- [1] K. Budajová, J. Czap, M2*-edge coloring and maximum matching of graphs*, Int. J. Pure Appl. Math. **88** (2013), 161–167.
- [2] J. Czap, M*i-edge colorings of graphs*, Appl. Math. Sci. **5** (2011), 2437–2442.
- [3] J. Czap, *A note on* M2*-edge colorings of graphs*, Opuscula Math. **35** (2015), 287–291.
- [4] J. Czap, J. Ivančo, P. Šugerek, M2*-edge colorings of cacti and graph joins*, Discuss. Math. Graph Theory **36** (2016), 59–69.

Jaroslav Ivančo jaroslav.ivanco@upjs.sk

Institute of Mathematics P. J. Šafárik University Jesenná 5, 041 54 Košice, Slovakia

Received: June 19, 2015. Revised: February 24, 2016. Accepted: February 24, 2016.