M₂-EDGE COLORINGS OF DENSE GRAPHS

Jaroslav Ivančo

Communicated by Mariusz Meszka

Abstract. An edge coloring φ of a graph G is called an M_i -edge coloring if $|\varphi(v)| \leq i$ for every vertex v of G, where $\varphi(v)$ is the set of colors of edges incident with v. Let $\mathcal{K}_i(G)$ denote the maximum number of colors used in an M_i -edge coloring of G. In this paper we establish some bounds of $\mathcal{K}_2(G)$, present some graphs achieving the bounds and determine exact values of $\mathcal{K}_2(G)$ for dense graphs.

Keywords: edge coloring, dominating set, dense graphs.

Mathematics Subject Classification: 05C15.

1. INTRODUCTION

We consider finite undirected graphs without loops and multiple edges. If G is a graph, then V(G) and E(G) stand for the vertex set and edge set of G, respectively. The subgraph of a graph G induced by $U \subseteq V(G)$ is denoted by G[U]. The set of vertices of G adjacent to a vertex $v \in V(G)$ is denoted by $N_G(v)$. The cardinality of this set, denoted $\deg_G(v)$, is called the degree of v. As usual $\Delta(G)$ and $\delta(G)$ stand for the maximum and minimum degree among vertices of G.

An edge coloring of a graph G is an assignment of colors to the edges of G, one color to each edge. So, any mapping φ from E(G) onto a non-empty set is an edge coloring of G. The set of colors used in an edge coloring φ of G is denoted by $\varphi(G)$, i.e., $\varphi(G) := \{\varphi(e) : e \in E(G)\}$. For any vertex $v \in V(G)$, let $\varphi(v)$ denote the set of colors of edges incident with v, i.e., $\varphi(v) := \{\varphi(vu) : vu \in E(G)\}$. An edge coloring φ of G is an M_i -edge coloring if at most i colors appears at any vertex of G, i.e., $|\varphi(v)| \leq i$ for every vertex $v \in V(G)$. The maximum number of colors used in an M_i -edge coloring of G is denoted by $\mathcal{K}_i(G)$.

The concept of an M_i -edge coloring was introduced by J. Czap [2]. In [1] authors establish a tight bound of $\mathcal{K}_2(G)$ depending on the size of a maximum matching in G. In [2] and [3], the exact values of $\mathcal{K}_2(G)$ for subcubic graphs and complete graphs are

© AGH University of Science and Technology Press, Krakow 2016

determined. In [4] it is determined $\mathcal{K}_2(G)$ for cacti, trees, graph joins and complete multipartite graphs.

In this paper we establish some bounds of $\mathcal{K}_2(G)$ and determine exact values of $\mathcal{K}_2(G)$ for dense graphs.

2. AUXILIARY RESULTS

Let φ be an M₂-edge coloring of a graph G. For a set $U \subseteq V(G)$, let $\varphi(U)$ denote the set of colors of edges incident with vertices of U. Thus, $\varphi(U) := \bigcup_{v \in U} \varphi(v)$.

Lemma 2.1. Let φ be an M₂-edge coloring of a graph G and let U be a non-empty subset of V(G). Then the following statements hold:

(i)
$$|\varphi(U)| \le |U| + c$$
, where c denotes the number of connected components of $G[U]$,
(ii) $|\{\varphi(e) : e \in E(G[U])\}| = 1$ whenever $|\varphi(U)| = |U| + 1$ and $G[U]$ is 2-connected.

Proof. First suppose that G[U] is a connected graph. Denote the vertices of U by u_1, u_2, \ldots, u_k in such a way that the set $X_i := \{u_1, u_2, \ldots, u_i\}$ induces a connected subgraph of G for every $i \in \{1, 2, \ldots, k\}$. As $G[X_i]$ is connected for $i \ge 2$, there is j $(1 \le j < i)$ such that $u_i u_j$ is an edge of G. Therefore, $\varphi(u_i u_j) \in \varphi(X_{i-1}) \cap \varphi(u_i)$ and

$$\begin{aligned} |\varphi(X_i)| &= |\varphi(X_{i-1}) \cup \varphi(u_i)| = |\varphi(X_{i-1})| + |\varphi(u_i)|| - |\varphi(X_{i-1}) \cap \varphi(u_i)| \\ &\leq |\varphi(X_{i-1})| + 2 - 1 = |\varphi(X_{i-1})| + 1. \end{aligned}$$

Clearly, $|\varphi(X_1)| = |\varphi(u_1)| \le 2 = |X_1| + 1$. Thus, by induction we get

$$|\varphi(X_i)| \le |\varphi(X_{i-1})| + 1 \le (|X_{i-1}| + 1) + 1 = |X_i| + 1$$

and consequently $|\varphi(U)| = |\varphi(X_k)| \le |X_k| + 1 = |U| + 1.$

If G[U] is a disconnected graph, then the set U can be partitioned into disjoint subsets U_1, U_2, \ldots, U_c in such a way that $G[U_i]$ is a connected component of G[U] for every $i \in \{1, 2, \ldots, c\}$. Therefore,

$$|\varphi(U)| = |\varphi(\bigcup_{i=1}^{c} U_i)| \le \sum_{i=1}^{c} |\varphi(U_i)| \le \sum_{i=1}^{c} (|U_i| + 1) = |U| + c.$$

Now suppose that G[U] is 2-connected and $|\{\varphi(e) : e \in E(G[U])\}| > 1$. Then there are edges uw and vw in E(G[U]) such that $\varphi(uw) \neq \varphi(vw)$. Therefore, $\varphi(w) \subseteq \varphi(u) \cup \varphi(v) \subseteq \varphi(U - \{w\})$ and consequently $\varphi(U) = \varphi(U - \{w\})$. As G[U] is 2-connected, $G[U - \{w\}]$ is connected and by (i)

$$|\varphi(U - \{w\})| \le |U - \{w\}| + 1 = |U|.$$

Hence $|\varphi(U)| \leq |U|$, which completes the proof.

A matching in a graph is a set of pairwise nonadjacent edges. A matching is *perfect* if every vertex of the graph is incident with exactly one edge of the matching. A maximum matching is a matching that contains the largest possible number of edges. The number of edges in a maximum matching of a graph G is denoted by $\alpha(G)$.

Lemma 2.2. Let φ be an M_2 -edge coloring of a graph G such that $\varphi(u) \cap \varphi(v) \neq \emptyset$ for all $u, v \in V(G)$. Then either $|\varphi(G)| = 3$ or $|\varphi(G)| \leq 1 + \alpha(G)$.

Proof. Let F be a graph whose vertices are colors of the coloring φ (i.e., $V(F) = \varphi(G)$) and vertices c_1, c_2 of F (colors of φ) are adjacent whenever there is a vertex $w \in V(G)$ such that $\varphi(w) = \{c_1, c_2\}$. Clearly, any two edges of F are adjacent. Therefore, F is either a 3-cycle or a star. If F is a 3-cycle, then $|\varphi(G)| = 3$. If F is a star, then there is a color c which appears at any vertex of G. Let H be a graph obtained from G by removing all edges of color c and also removing all arisen isolated vertices. Evidently, every component of H is monochromatic. Thus, $|\varphi(G)|$ is not greater than the number of components of H increased by 1. As each component of H has at least one edge, the number of components of H is at most $\alpha(H)$. The graph H is a subgraph of Gand so $\alpha(H) \leq \alpha(G)$. Hence $|\varphi(G)| \leq 1 + \alpha(G)$.

Let φ be an M₂-edge coloring of a graph G. A set $S, S \subseteq E(G)$, is rainbow if no two edges of S are colored the same. Denote by $\mathcal{R}(\varphi)$ the family of all spanning subgraphs of G whose edge sets are maximal rainbow sets. Evidently, $|E(H)| = |\varphi(G)|$ and $\Delta(H) \leq 2$ whenever $H \in \mathcal{R}(\varphi)$.

Lemma 2.3. Let φ be an M₂-edge coloring of a graph G. If $\delta(G) > 2$ then $\mathcal{R}(\varphi)$ contains an acyclic graph.

Proof. Suppose to the contrary that any graph belonging to $\mathcal{R}(\varphi)$ contains a cycle. Let $H \in \mathcal{R}(\varphi)$ be a graph with the minimum number of cycles. Let C be a cycle of H and let u be a vertex of C. As $\delta(G) > 2$, $\deg_G(u) \ge 3$. Let e_1 , e_2 and e_3 be distinct edges of G incident with u such that $\{e_1, e_2\} \subset E(C)$ and $e_3 \notin E(C)$. As $\{e_1, e_2\} \subset E(C) \subset E(H), \varphi(e_1) \neq \varphi(e_2)$. Since $|\varphi(u)| \le 2$, there is $i \in \{1, 2\}$ such that $\varphi(e_3) = \varphi(e_i)$. Clearly, if $e_3 = uv$, then $\deg_H(v) < 2$. Now, it is easy to see that the spanning subgraph of G with the edge set $(E(H) - \{e_i\}) \cup \{e_3\}$ belongs to $\mathcal{R}(\varphi)$ and contains less cycles than H, a contradiction.

Lemma 2.4. Let φ be an M₂-edge coloring of a graph G and let U be a non-empty subset of V(G) such that $\varphi(u) \cap \varphi(v) = \emptyset$ for all distinct vertices $u, v \in U$. Then

$$|\varphi(G)| \le |U| + |V(G)| - \frac{1}{2} \sum_{u \in U} \deg_G(u).$$

Proof. As $\varphi(u) \cap \varphi(v) = \emptyset$ for all distinct vertices $u, v \in U$, the set U is an independent set of vertices in G. Thus, there is a spanning subgraph H of G belonging to $\mathcal{R}(\varphi)$ such that $\deg_H(u) = |\varphi(u)|$ for each vertex $u \in U$. For any non-negative integer i put $N_i := \{w \in V(G) - U : |N_G(w) \cap U| = i\}$. Since $|\varphi(w)| \leq 2$ and $\varphi(u) \cap \varphi(w) \neq \emptyset$ for any edge $uw \in E(G), N_i = \emptyset$ for every $i \geq 3$. Thus the sets U, N_0, N_1 and N_2 form a partition of V(G). So, $|V(G)| = |U| + |N_0| + |N_1| + |N_2|$. Moreover, $\sum_{u \in U} \deg_G(u) = 1 \cdot |N_1| + 2 \cdot |N_2|$. Combining these equations we get

$$2|N_0| + |N_1| = 2|V(G)| - 2|U| - \sum_{u \in U} \deg_G(u).$$

Let H' be subgraph of H induced by V(H) - U. Then, $\deg_{H'}(w) \leq 2 - i$ for any vertex $w \in N_i$, $0 \leq i \leq 2$, because $\varphi(w)$ contains at least i colors belonging to $\varphi(U)$. Therefore,

$$2|E(H')| = \sum_{v \in V(H')} \deg_{H'}(v) \le 2 \cdot |N_0| + 1 \cdot |N_1| + 0 \cdot |N_2|$$
$$= 2|V(G)| - 2|U| - \sum_{u \in U} \deg_G(u).$$

Hence

$$\begin{split} |\varphi(G)| &= |E(H)| = \sum_{u \in U} |\varphi(u)| + |E(H')| \le 2|U| + |E(H')| \\ &\le 2|U| + \left(|V(G)| - |U| - \frac{1}{2} \sum_{u \in U} \deg_G(u)\right) \\ &= |U| + |V(G)| - \frac{1}{2} \sum_{u \in U} \deg_G(u), \end{split}$$

which completes the proof.

Lemma 2.5. Let G be a connected graph of order at least 2. If any vertex in $U \subset V(G)$ is a cut-vertex of G then there is an M_2 -edge coloring φ of G such that $|\varphi(G)| = 1 + |U|$ and $|\varphi(v)| = 2$ if and only if $v \in U$.

Proof. Denote by u_1, u_2, \ldots, u_k vertices of the set U. Put $U_0 := \emptyset$ and $U_i := U_{i-1} \cup \{u_i\}$, for $i \in \{1, 2, \ldots, k\}$.

Let φ_0 be a mapping from E(G) to $\{0\}$. As $\varphi_0(e) = 0$, for every edge $e \in E(G)$, $|\varphi_0(G)| = 1 = 1 + |U_0|$ and $|\varphi_0(v)| = 2$ if and only if $v \in U_0$.

Now suppose that a mapping φ_i from E(G) onto $\{0, 1, \ldots, i\}$ is an M₂-edge coloring of G such that $|\varphi_i(G)| = 1 + |U_i|$ and $|\varphi_i(v)| = 2$ if and only if $v \in U_i$. As $u_{i+1} \notin U_i$, $|\varphi_i(u_{i+1})| = 1$. Since u_{i+1} is a cut-vertex of G, the graph $G - u_{i+1}$ is disconnected. Let C be a chosen connected component of $G - u_{i+1}$ and H be a subgraph of G induced by $V(C) \cup \{u_{i+1}\}$. Consider a mapping φ_{i+1} from E(G) onto $\{0, 1, \ldots, i+1\}$ given by

$$\varphi_{i+1}(e) = \begin{cases} i+1 & \text{if } \varphi_i(e) \in \varphi_i(u_{i+1}) \text{ and } e \in E(H), \\ \varphi_i(e) & \text{otherwise.} \end{cases}$$

Evidently, $|\varphi_{i+1}(v)| = |\varphi_i(v)|$ for every vertex $v \in V(G) - \{u_{i+1}\}$, and $|\varphi_{i+1}(u_{i+1})| = 1 + |\varphi_i(u_{i+1})|$. Therefore, φ_{i+1} is an M₂-edge coloring of G such that $|\varphi_{i+1}(G)| = 1 + |U_{i+1}|$ and $|\varphi_{i+1}(v)| = 2$ if and only if $v \in U_{i+1}$. Thus, by induction we get a desired coloring.

Lemma 2.6. Let G be a graph with $\delta(G) \geq 2$. Then the line graph L(G) of G satisfies

$$\mathcal{K}_2(L(G)) \ge |V(G)|.$$

Proof. All edges of G incident with a vertex v induce a subgraph K(v) of L(G), which is isomorphic to a complete graph of order $\deg_G(v)$. Subgraphs K(v), for all $v \in V(G)$, form a decomposition of L(G), where any edge of G (i.e., vertex of L(G)) belongs to precisely two distinct subgraphs. For every vertex $v \in V(G)$ color all edges of K(v)with color c_v . It is easy to see that this gives an M₂-edge coloring of L(G) using |V(G)|colors, so $\mathcal{K}_2(L(G)) \geq |V(G)|$.

3. BOUNDS

It is easy to see that for disjoint graphs G and H we have

 $\mathcal{K}_2(G \cup H) = \mathcal{K}_2(G) + \mathcal{K}_2(H).$

Therefore, it is sufficient to consider connected graphs.

A vertex cover of a graph G is a subset U of V(G) such that every edge of G is incident with a vertex in U and it is said to be *connected* if the subgraph of G induced by U is connected. The smallest number of vertices in any connected vertex cover of G is denoted by $\beta_c(G)$. Note that the set V(G) - U is independent if and only if U is a vertex cover of G.

Theorem 3.1. Let G be a connected graph. Then $\mathcal{K}_2(G) \leq 1 + \beta_c(G)$.

Proof. Let U be a connected vertex cover of a graph G such that $|U| = \beta_c(G)$. Let φ be an M₂-edge coloring of G which uses $\mathcal{K}_2(G)$ colors, i.e., $|\varphi(G)| = \mathcal{K}_2(G)$. Since U is a vertex cover of G, $\varphi(G) = \varphi(U)$, and the desired inequality follows from Lemma 2.1.

The following result presents some graphs achieving the bound $1 + \beta_c(G)$.

Theorem 3.2. Let I be an independent set of a connected graph G satisfying

- (i) $|V(G) I| \ge 2$,
- (ii) G[V(G) I] is a connected subgraph of G,
- (iii) if $u \in V(G) I$ is not a cut vertex of G[V(G) I], then there is a vertex $v \in I$ adjacent to u,
- (iv) $\deg_G(v) \leq 2$ for all $v \in I$.

Then

$$\mathcal{K}_2(G) = 1 + |V(G)| - |I|.$$

Proof. According to (ii), V(G) - I is a connected vertex cover of G, and by Theorem 3.1, $\mathcal{K}_2(G) \leq 1 + |V(G) - I| = 1 + |V(G)| - |I|$.

On the other hand, let U be a subset of V(G) - I containing vertices that have no neighbor in I. According to Lemma 2.5, there is an M₂-edge coloring φ of G[V(G) - I]such that $|\varphi(G[V(G) - I])| = 1 + |U|$ and $|\varphi(v)| = 2$ if and only if $v \in U$. For every vertex $w \in V(G) - (I \cup U)$ let c_w be a new color, i.e., c_w does not belong to $\varphi(G[V(G) - I])$. The edge coloring ψ of G is defined in the following way

$$\psi(e) = \begin{cases} \varphi(e) & \text{if } e \in E(G[V(G) - I]), \\ c_w & \text{if } e \notin E(G[V(G) - I]) \text{ and } e \text{ is incident with } w. \end{cases}$$

It is easy to see that ψ is an M₂-edge coloring of G which uses $1+|U|+|V(G)-(I\cup U)| = 1+|V(G)|-|I|$ colors, i.e., $\mathcal{K}_2(G) \ge 1+|V(G)|-|I|$.

Let $V_i(G)$ denote the set of vertices of degree j in G.

If T is a tree different from a star, then the set $V_1(T)$ satisfies the conditions of Theorem 3.2. Thus, we immediately have the following assertion (the assertion is evident for stars).

Corollary 3.3. If T is a tree on at least two vertices, then

$$\mathcal{K}_2(T) = 1 + |V(T)| - |V_1(T)|.$$

Similarly, $V_2(O)$ is an independent set of a maximal outerplanar graph O on at least four vertices. So, we have

Corollary 3.4. Let O be a maximal outerplanar graph on at least four vertices. If every vertex of degree at least 3 is adjacent to a vertex of degree 2, then

$$\mathcal{K}_2(O) = 1 + |V(O)| - |V_2(O)|$$

One can see that a maximal outerplanar graph in the previous result may be replaced by a maximal 2-degenerate graph (including a 2-tree).

We are also able to prove the following result.

Corollary 3.5. Let G be a Hamiltonian graph with $\Delta(G) \leq 3$. Then the line graph L(G) of G satisfies

$$\mathcal{K}_2(L(G)) = |V(G)|.$$

Proof. If $\Delta(G) < 3$, then G is a cycle and L(G) is isomorphic to G. Clearly, the claim holds in this case. So, we will suppose that $\Delta(G) = 3$.

Let C be a Hamilton cycle of G. Set U = E(C) and I = E(G) - U. Evidently, $|U| = |V(G)|, 1 \le |I| \le |V(G)|/2$ and the vertex set of L(G) is partitioned into disjoint non-empty subsets U and I. Let H be a subgraph of L(G) induced by U. As H is a cycle and I is an independent set of vertices in L(G) (a matching of G), U is a connected vertex cover of L(G). According to Theorem 3.1, $\mathcal{K}_2(L(G)) \le 1 + |U|$.

Suppose that there is an M₂-edge coloring φ of L(G) which uses 1 + |U| colors. In this case, $\varphi(U) = 1 + |U|$ and the subgraph H of L(G) induced by U is 2-connected. By Lemma 2.1, all edges of H have the same color c. Since any edge of L(G) not belonging to H is incident with a vertex of I, $|\varphi(I)| \ge |U|$. As φ is an M₂-edge coloring and $|I| \le |V(G)|/2 = |U|/2$, $|\varphi(x)| = 2$ for each $x \in I$, $c \notin \varphi(I)$, $\varphi(x) \cap \varphi(y) = \emptyset$ for $x \ne y$, $\{x, y\} \subset I$, and |I| = |V(G)|/2 (i.e., G is regular of degree 3). Let e be an edge of C (an element of U) and let e_1 , e_2 be distinct edges of I adjacent to e. Clearly, e and e_i , $i \in \{1, 2\}$, are adjacent vertices of L(G) and so $\varphi(e) \cap \varphi(e_1) \ne \emptyset$, $\varphi(e) \cap \varphi(e_2) \ne \emptyset$, and moreover the color c belongs to $\varphi(e)$. This implies $|\varphi(e)| \ge 3$, a contradiction. Therefore, $\mathcal{K}_2(L(G)) \le |U| = |V(G)|$.

The opposite inequality follows from Lemma 2.6.

A set $D \subseteq V(G)$ is called *dominating* in G, if for each $v \in V(G) - D$ there exists a vertex $u \in D$ adjacent to v. **Theorem 3.6.** Let D be a dominating set of a graph G. If c denotes the number of connected components of G[D], then

$$\mathcal{K}_2(G) \le c + |D| + \alpha (G[V(G) - D]).$$

Proof. Let φ be an M₂-edge coloring of G which uses $\mathcal{K}_2(G)$ colors, i.e., $|\varphi(G)| = \mathcal{K}_2(G)$. Let H be a graph obtained from G by removing all edges of colors belonging to $\varphi(D)$ and also removing all arisen isolated vertices. Evidently, every component of H is monochromatic. Thus, the number of components of H increased by $|\varphi(D)|$ is equal to $\mathcal{K}_2(G)$. As each component of H has at least one edge, the number of components of H is at most $\alpha(H)$. Since H is a subgraph of G[V(G) - D], $\alpha(H) \leq \alpha(G[V(G) - D])$. Therefore,

$$\mathcal{K}_2(G) \le |\varphi(D)| + \alpha(H) \le |\varphi(D)| + \alpha(G[V(G) - D]).$$

By Lemma 2.1, $|\varphi(D)| \leq c + |D|$ and the desired inequality follows.

Let $G \cup H$ denote the disjoint union of graphs G and H. Let h be a mapping from V(H) to V(G). By $G \cup_h H$ we denote the graph $G \cup H$ together with all edges joining each vertex $u \in V(H)$ and $h(u) \in V(G)$.

Let G be a graph of order n. Let nH denote the disjoint union of n copies of a graph H. If $h: V(nH) \to V(G)$ is a mapping such that the image of any vertex of *i*th copy of H is the *i*th vertex of G, then $G \cup_h nH$ is called a *corona* of G with H and it is denoted by $G \odot H$.

Theorem 3.7. Let G be a graph without isolated vertices. Let h be a surjective mapping from the vertex set of a graph H onto V(G) such that there exists a maximum matching M of H satisfying: h(u) = h(v) for every edge $uv \in E(H) - M$. If c denotes the number of connected components of G, then

$$\mathcal{K}_2(G \cup_h H) = c + |V(G)| + \alpha(H).$$

Proof. Clearly, V(G) is a dominating set of $G \cup_h H$. According to Theorem 3.6, $\mathcal{K}_2(G \cup_h H) \leq c + |V(G)| + \alpha(H)$.

On the other hand, let G_1, G_2, \ldots, G_c be connected components of G. For every vertex $v \in V(G)$, let H_v be a subgraph of H induced by $\{u \in V(H) : h(u) = v\}$. Consider an edge coloring ψ of $G \cup_h H$ defined by

$$\psi(e) = \begin{cases} i & \text{if } e \in E(G_i), \\ e & \text{if } e \in M, \\ v & \text{if } e \text{ is incident with a vertex of } H_v \text{ and } e \notin M. \end{cases}$$

It is easy to see that ψ is an M₂-edge coloring of $G \cup_h H$ which uses $c + \alpha(H) + |V(G)|$ colors, i.e., $\mathcal{K}_2(G \cup_h H) \ge c + |V(G)| + \alpha(H)$.

The corona of a connected graph G on at least two vertices with a non-empty graph H satisfies conditions of Theorem 3.7, therefore, we have the following corollary.

Corollary 3.8. Let G be a connected graph on at least two vertices. For any non-empty graph H, the corona of G with H satisfies

$$\mathcal{K}_2(G \odot H) = 1 + |V(G)| (1 + \alpha(H)).$$

The Cartesian product $G_1 \Box G_2$ of graphs G_1 , G_2 is a graph whose vertices are all ordered pairs $[v_1, v_2]$, where $v_1 \in V(G_1)$, $v_2 \in V(G_2)$, and two vertices $[v_1, v_2]$, $[u_1, u_2]$ are joined by an edge in $G_1 \Box G_2$ if and only if either $v_1 = u_1$ and v_2 , u_2 are adjacent in G_2 , or v_1 , u_1 are adjacent in G_1 and $v_2 = u_2$.

Corollary 3.9. Let G be a graph with $\Delta(G) = |V(G)| - 1$. If |V(G)| > 1 then

$$\mathcal{K}_2(G \Box K_2) = 2 + |V(G)|.$$

Proof. Let u be a saturated vertex of a graph G (i.e., $\deg_G(u) = |V(G)| - 1$). Let v_1 and v_2 be vertices of K_2 . Denote by G^* the subgraph of $G \square K_2$ induced by $\{[u, v_1], [u, v_2]\}$. Similarly, the subgraph of $G \square K_2$ induced by $V(G \square K_2) - \{[u, v_1], [u, v_2]\}$ denote by H. Evidently, G^* is isomorphic to K_2 and $\alpha(H) = |V(G)| - 1$. Let h be a mapping from V(H) onto $V(G^*)$ given by $h([w, v_i]) = [u, v_i], i \in \{1, 2\}$. Clearly, the graph $G^* \cup_h H$ is isomorphic to $G \square K_2$. As $G^* \cup_h H$ satisfies the conditions of Theorem 3.7, we immediately get the assertion.

It is easy to see that $\mathcal{K}_2(G) \leq |V(G)|$. For graphs with $\delta(G) > 2$ we can establish the better bound.

Theorem 3.10. Let G be a graph with $\delta(G) \geq 3$. Then

$$\mathcal{K}_2(G) \le \left\lceil \frac{2}{\delta(G)} \left(1 + \left\lceil \frac{|V(G)|}{2} \right\rceil \right) \right\rceil + \left\lfloor \frac{|V(G)|}{2} \right\rfloor - 1.$$

Proof. Suppose that G is a counterexample of order n. Then there is an M₂-edge coloring φ of G using $k + \lfloor n/2 \rfloor$ colors, where $k = \lceil 2(1 + \lceil n/2 \rceil)/\delta(G) \rceil$. According to Lemma 2.3, there is an acyclic graph $H \in \mathcal{R}(\varphi)$. Then

$$2|E(H)| = 2|V_2(H)| + |V_1(H)| \le 2|V_2(H)| + (n - |V_2(H)|) = |V_2(H)| + n.$$

Therefore

$$|V_2(H)| \ge 2|E(H)| - n = 2(k + \lfloor n/2 \rfloor) - n \ge 2k - 1$$

As $\Delta(H) \leq 2$ and H is acyclic, any component of H is a path. Thus, there is an independent set U of H such that $U \subset V_2(H)$ and |U| = k. Since E(H) is a rainbow set of φ , $\varphi(u) \cap \varphi(v) = \emptyset$ for all distinct vertices $u, v \in U$. By Lemma 2.4, we have

$$|\varphi(G)| \leq |U| + n - \frac{1}{2} \sum_{u \in U} \deg_G(u) \leq k + n - \frac{1}{2} k \delta(G).$$

As $k = \lfloor 2(1 + \lfloor n/2 \rfloor) / \delta(G) \rfloor$, $k\delta(G) \ge 2(1 + \lfloor n/2 \rfloor)$ and

$$|\varphi(G)| \le k + n - (1 + \lceil n/2 \rceil) \le k + \lfloor n/2 \rfloor - 1,$$

a contradiction.

Some line graphs achieve the bound established in previous theorem.

Corollary 3.11. Let G be a bipartite graph with parts A and B such that $\deg_G(u) = p \ge 3$, for every vertex $u \in A$, and $\deg_G(v) = 2$, for every vertex $v \in B$ except for a vertex $w \in B$ when $\deg_G(w) = 3$ if p|A| is odd. Then the line graph L(G) of G satisfies

$$\mathcal{K}_2(L(G)) = |V(G)|.$$

Proof. Set t = |A|. Then |V(L(G))| = |E(G)| = pt and $|B| = \lfloor |E(G)|/2 \rfloor = \lfloor pt/2 \rfloor$. As $\delta(L(G)) = p$ and $\lceil 2(1 + \lceil pt/2 \rceil)/p \rceil = t + 1$, according to Theorem 3.10, we have

$$\mathcal{K}_2(L(G)) \le t + |pt/2| = |A| + |B| = |V(G)|.$$

The opposite inequality follows from Lemma 2.6.

For dense graphs we have the following result.

Theorem 3.12. Let G be a graph with $\delta(G) > \left\lceil \frac{|V(G)|}{2} \right\rceil$. Then

$$\mathcal{K}_2(G) = 1 + \left\lfloor \frac{|V(G)|}{2} \right\rfloor.$$

Proof. According to Theorem 3.10, $\mathcal{K}_2(G) \leq 1 + ||V(G)|/2|$.

On the other hand, G is Hamiltonian because $\delta(G) > \lceil |V(G)|/2 \rceil$. Thus, $\alpha(G) = \lfloor |V(G)|/2 \rfloor$. Let M be a maximum matching of G. Color all edges of E(G) - M with one color and every edge of M with a different color. It is easy to see that this gives an M₂-edge coloring of G using 1 + |M| colors. Therefore, $\mathcal{K}_2(G) \ge 1 + |M| = 1 + \lfloor |V(G)|/2 \rfloor$, as required.

Acknowledgments

This work was supported by the Slovak VEGA Grant 1/0652/12.

REFERENCES

- K. Budajová, J. Czap, M₂-edge coloring and maximum matching of graphs, Int. J. Pure Appl. Math. 88 (2013), 161–167.
- [2] J. Czap, M_i-edge colorings of graphs, Appl. Math. Sci. 5 (2011), 2437–2442.
- [3] J. Czap, A note on M₂-edge colorings of graphs, Opuscula Math. **35** (2015), 287–291.
- [4] J. Czap, J. Ivančo, P. Šugerek, M₂-edge colorings of cacti and graph joins, Discuss. Math. Graph Theory 36 (2016), 59–69.

Jaroslav Ivančo jaroslav.ivanco@upjs.sk

Institute of Mathematics P. J. Šafárik University Jesenná 5, 041 54 Košice, Slovakia

Received: June 19, 2015. Revised: February 24, 2016. Accepted: February 24, 2016.