PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystal plasticity finite element simulations of the indentation test

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacje testu indentacji z wykorzystaniem teorii plastyczności kryształów i metody elementów skończonych
Języki publikacji
EN
Abstrakty
EN
The goal of the paper is to report the successful simulations of the nanoindentation problem. The finite-strain isotropicelasto-plasticity and crystal elasto-plasticity models used for the simulations are described. The developed contact formulation describing the contact with rigid surface approximating pyramidal indenter is presented. Both tensile stress-strain andindentation load-penetration curves obtained with a single set of material parameters are presented to be in the satisfactoryagreement with experimental data. It seems that such a result is presented for the first time.
PL
Celem pracy jest przedstawienie pomyślnego wyniku symulacji zadania nanoindentacji. Opisano wykorzystane w symulacjach modele izotropowej sprężysto-plastyczności oraz sprężysto-plastyczności kryształów. Przedstawiono również sformułowanie kontaktu ze sztywną powierzchnią przybliżającą końcówkę indentera o kształcie ostrosłupa. Zaprezentowano zarówno krzywe naprężenie-odkształcenie uzyskane w symulacji testu rozciągania, jak i siła-zagłębienie, które otrzymano przy użyciu pojedynczego zestawu parametrów materiałowych. Uzyskano zadowalająca zgodności z eksperymentem. Wydaje się, że tego typu wyniki zostały zaprezentowane po raz pierwszy.
Wydawca
Rocznik
Strony
41--49
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • Alcalá, J., Casals, O., Očenášek, J., 2008, Micromechanics of pyramidal indentation in fcc metals: Single crystal plasticity finite element analysis, J. Mech. Phys. Solids, 56(11), 3277-3303.
  • Alcalá, J., Esqué-de los Ojos, D., Očenášek, J., 2015, Extracting uniaxial responses of single crystals from sharp and spherical hardness measurements, Mech. Mater., 84, 100-113.
  • Ambriz, R., Chicot, D., Benseddiq, N., Mesmacque, G., De La Torre, S., 2011, Local mechanical properties of the 6061-T6 aluminium weld using micro-traction and instrumented indentation, European Journal of Mechanics- A/Solids, 30(3), 307-315.
  • Arminjon, M., 1991, A regular form of the Schmid law. Application to the ambiguity problem, Textures and Microstructures, 14-18, 1121-1128.
  • Asaro, R.J., Needleman, A., 1985, Texture development and strain hardening in rate dependent polycrystals, Acta Metall., 33(6), 923-953.
  • Asaro, R.J., J., Rice, R., 1997, Strain localization in ductile crystals, J. Mech. Phys. Solids, 25, 309-338.
  • Berla, L.A., Allen, A.M., Han, S.M., Nix, W.D., 2010, A physically based model for indenter tip shape calibration for nanoindentation, J. Mater. Res., 25(4), 735-745.
  • Casals, Q., Forest, S., 2009, Finite element crystal plasticity analysis of spherical indentation in bulk single crystals and coatings, Comput. Mater. Sci., 45(3), 774-782.
  • Chang, H.-J., Fivel, M., Rodney, D., Verdier, M., 2010, Multiscale modelling of indentation in fcc metals: From atomic to continuum, Comptes Rendus Physique, 11(3-4), 285-292.
  • Eidel, B., 2011, Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (0 0 1) fcc single crystal, Acta Mater., 59(4), 1761-1771.
  • Frydrych, K., Kowalczyk-Gajewska, K., 2018, Grain refinement in the equal channel angular pressing process: simulations using the crystal plasticity finite element method, Model.Simul. Mater. Sci. Eng., 26, 065015.
  • Frydrych, K., Kowalczyk-Gajewska, K., Prakash, A., 2019, On solution mapping and remeshing in crystal plasticity finite element simulations: Application to equal channel angular pressing, Model. Simul. Mater. Sci. Eng., 27, 075001.
  • Gambin, W., 1991, Plasticity of crystals with interacting slip systems, Enging. Trans., 39, 303-324.
  • Hill, R., Rice, J.R., 1972, Constitutive analysis of elastic–plastic crystals at arbitrary strain, J. Mech. Phys. Solids, 20, 401-413.
  • Hosemann, P., Vieh, C., Greco, R., Kabra, S., Valdez, J., Cappiello, M., Maloy, S., 2009, Nanoindentation on ion irradiated steels, J. Nucl. Mater., 389(2), 239-247.
  • Hosemann, P., Kiener, D., Wang, Y., Maloy, S.A., 2012, Issues to consider using nano indentation on shallow ion beam irradiated materials, J. Nucl. Mater., 425(1-3), 136-139.
  • Hure, J., El Shawish, S., Cizelj, L., Tanguy, B., 2016, Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel, J. Nucl. Mater., 476, 231-242.
  • Korelc, J., 1996, Symbolic approach in computational mechanics and its application to the enhanced strain method, PhD thesis, Department of Mechanics, TH Darmstadt.
  • Korelc, J., 1997, Automatic generation of finite-element code by simultaneous optimization of expressions, Theoretical Computer Science, 187(1-2), 231-248.
  • Korelc, J., 2002, Multi-language and multi-environment generation of nonlinear finite element codes, Eng. Comput., 18, 312-327.
  • Korelc, J., Wriggers, P., 2016, Automation of finite element methods, Springer, Basel.
  • Kowalczyk, K., Gambin, W., 2004, Model of plastic anisotropy evolution with texture-dependent yield surface, Int. J. Plast., 20, 19-54.
  • Kucharski, S., Jarząbek, D., 2014, Depth dependence of nanoindentation pile-up patterns in copper single crystals, Metall. Mater. Trans. A, 45(11), 4997-5008.
  • Kucharski, S., Stupkiewicz, S., Petryk, H., 2014, Surface pile-up patterns in indentation testing of Cu single crystals, Exper. Mech., 54(6), 957-969.
  • Lengiewicz, J., 2008, Analiza wrażliwości dla zagadnień kontaktowych z tarciem, PhD Thesis, IPPT PAN, Warszawa, (in Polish).
  • Lewandowski, M., Stupkiewicz, S., 2018, Size effects in Wedge indentation predicted by a gradient-enhanced crystal- plasticity model, Int. J. Plast., 109, doi 10.1016/j.ijplas.2018.05.008
  • Li, L., Shen, L., Proust, G., Moy, C.K., Ranzi, G., 2013, Threedimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Mater. Sci. Eng.: A, 579, 41-49.
  • Ling, C., Tanguy, B., Besson, J., Forest, S., Latourte, F., 2017, Void growth and coalescence in triaxial stress fields in irradiated fcc single crystals, J. Nucl. Mater., 492, 157-170.
  • Liu, M., Lu, C., Tieu, K., Yu, H., 2014, Numerical comparison between berkovich and conical nano-indentations: Mechanical behaviour and micro-texture evolution, Mater. Sci. Eng. A, 619, 57-65.
  • Liu, M., Lu, C., Tieu, K., Peng, C.T., Kong, C., 2015, A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation, Scientific reports, 5, 15072.
  • Liu, M., Lu, C., Tieu, K., Zhou, K., Peng, C.T., 2016, Indentation analysis of mechanical behaviour of torsion-processed single-crystal copper by crystal plasticity finite-element method modelling, Philosophical Magazine, 96(3), 261-273.
  • Liu, Y., Wang, B., Yoshino, M., Roy, S., Lu, H., Komanduri, R., 2005, Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale, J. Mech. Phys. Solids, 53 (12), 2718-2741.
  • Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., Komanduri, R., 2008, Orientation effects in nanoindentation of single crystal copper, Int. J. Plast., 24(11),1990-2015.
  • Mandel, J., 1971, Plasticité classique et viscoplasticité, CISM course No. 97. Springer, Wien.
  • Nie, J., Liu, Y., Xie, Q., Liu, Z., 2018, Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model, Nuclear Engineering and Technology, 2018.
  • Petryk, H., Stupkiewicz, S., Kucharski, S., 2017, On direct estimation of hardening exponent in crystal plasticity from the spherical indentation test, Int. J. Solids Struct., 112, 209-221.
  • Renner, E., Gaillard, Y., Richard, F., Amiot, F., Delobelle, P.,2016,. Sensitivity of the residual topography to single crystal plasticity parameters in Berkovich nanoindentation on FCC nickel, Int. J. Plast., 77, 118-140.
  • Ryś, M. , 2016, Constitutive modelling of damage evolution and martensitic transformation in 316l stainless steel, Acta Mechanica et Automatica, 10(2), 125-132.
  • Ryś, M., Skoczeń, B., 2017, Coupled constitutive model of damage affected two-phase continuum, Mech. Mater., 115, 1-15.
  • Saleh, M., Zaidi, Z., Ionescu, M., Hurt, C., Short, K., Daniels, J., Munroe, P., Edwards, L., Bhattacharyya, D., 2016, Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation–Experiments and modelling, Int. J. Plast., 86, 151-169.
  • Skoczeń, B., Ustrzycka, A., 2015, Radiation Damage Evolution in Ductile Materials, Springer International Publishing, Cham, 397-411.
  • Skoczeń, B., Ustrzycka, A., 2016, Kinetics of evolution of radiation induced micro-damage in ductile materials subjected to time-dependent stresses, Int. J. Plast., 80, 86-110.
  • Stupkiewicz, S., Lengiewicz, J., Korelc, J., 2010, Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation, Computer Methods in Applied Mechanics and Engineering, 199(33-36), 2165-2176.
  • Thomas Jr.,J.F., 1968, Third-order elastic constants of aluminum, Physical Review, 175(3), 955.
  • Torres-Torres, D., Muñoz-Saldaña, J., Gutierrez-Ladron-de Guevara, L., Hurtado-Macías, A., Swain, M., 2010, Geometry and bluntness tip effects on elastic–plastic behaviour during nanoindentation of fused silica: experimental and FE simulation, Model. Simul. Mater. Sci. Eng., 18(7), 075006.
  • Wang, Q., Cochrane, C., Skippon, T., Wang, Z., Abdolvand, H., Daymond, M.R., 2019, Orientation-dependent irradiation hardening in pure Zr studied by nanoindentation, electron microscopies, and crystal plasticity finite element modeling, Int. J. Plast., 124, 133-154.;
  • Wang, Y., Raabe, D., Klüber, C., Roters, F., 2004 Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater., 52(8), 2229-2238.
  • Wang, Z., Zhang, J., ul Hassan, H., Zhang, J., Yan, Y., Hartmaier, A., Sun, T., 2018, Coupled effect of crystallographic orientation and indenter geometry on nanoindentation of single crystalline copper, Int. J. Mech. Sci., 148, 531-539.
  • Xiao, X., Chen, L., Yu, L., Duan, H., 2019a, Modelling nano-indentation of ion-irradiated FCC single crystals by straingradient crystal plasticity theory, Int. J. Plast., 116, 216-231.
  • Xiao, X., Terentyev, D., Bakaev, A., Zinovev, A., Dubinko, A., Zhurkin, E., 2019b, Crystal plasticity finite element method simulation for the nano-indentation of plasma-exposed tungsten, J. Nucl. Mater., 518, 334-341.
  • Yao, W., You, J., 2017, Berkovich nanoindentation study of monocrystalline tungsten: a crystal plasticity study of surface pile-up deformation, Philosophical Magazine, 97(17), 1418-1435.
  • Zambaldi, C., Raabe, D., 2010, Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation, Acta Mater., 58(9), 3516-3530.
  • Zambaldi, C., Yang, Y., Bieler, T.R., Raabe, D., 2012, Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip, J. Mater. Res., 27(1), 356-367.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42aa02b0-925d-49eb-a901-d2eff444c763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.