PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of enzymatic pretreatment on yield and chemical composition of Rosmarinus officinalis essential oil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effect of enzymatic pretreatment before hydrodistillation process on yield and composition of Rosmarinus officinalis essential oil was studied. Results obtained by using two selected commercial enzymes applied in food and beverage industry were compared. Control process with non-enzymatic pretreatment in analogous conditions was also performed for proper interpretation of results. Application of gas chromatography with mass selective detector (GC-MS) enabled analysis and comparison of essential oils composition. Moreover, total phenolic content (TPC) was determined spectrophotometrically in post-processing hydrolates, which are also valuable products e.g. for cosmetic applications. Modifications of isolation process by pretreatment with selected enzymes resulted in significant increase in essential oil yields in comparison to conventional hydrodistillation and control process with non-enzymatic pretreatment in analogous conditions. No substantial changes in the composition of obtained essential oils were observed. In post-processing hydrolates higher values of total phenolic content (TPC) were found both after enzymatic and non-enzymatic pretreatment.
Rocznik
Strony
61--66
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Nieto, G., Ros, G. & Castillo, J. (2018). Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): a review. Medicines, 2018, 5, 98–110. DOI: 10.3390/medicines5030098.
  • 2. de Oliveira, J.R., Camargo, S.E.A. & de Oliveira, L.D. (2019). Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 26,5. DOI: 10.1186/s12929-019-0499-8.
  • 3. Del Pilar Sanchez-Camargo A. & Herrero M. (2017). Rosemary (Rosmarinus officinalis) as a functional ingredient: recent scientific evidence. Curr. Opin. Food Sci. 14, 13–19. DOI: 10.1016/j.cofs.2016.12.003.
  • 4. Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirovi, S. & Mikov, M. (2014). Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med. 14, 225, 1–9. DOI: 10.1186/1472-6882-14-225.
  • 5. Wang, W., Wu, N., Zu, Y.G. & Fu, Y.J. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 108, 1019–1022. DOI: 10.1016/j.foodchem.2007.11.046.
  • 6. Hussain, A.I., Anwar, F., Chatha, S.A.S., Jabbar, A., Mahboob, S. & Nigam, P.S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 41, 1070–1078. DOI: 10.1590/S1517-83822010000400027.
  • 7. Stojiljkovic, J., Trajchev, M., Nakov, D. & Petrovska, M. (2018). Antibacterial activities of rosemary essential oils and their components against pathogenic bacteria. Adv. Cytol. Pathol. 3(4), 93–96. DOI: 10.15406/acp.2018.03.00060.
  • 8. Ahamad, J., Uthirapathy, S., Ameen, M.M. & Anwer, E.T. (2019) Essential oil composition and antidiabetic, anticancer activity of Rosmarinus officinalis L. leaves from Erbil (Iraq). J. Essent. Oil Bear. Plants 22(6), 1544–1553. DOI: 10.1080/0972060X.2019.1689179.
  • 9. Allegra, A., Tonacci, A., Pioggia, G., Caterina, Musolino, C. & Gangemi, S. (2020). Anticancer activity of Rosmarinus officinalis L.: mechanisms of action and therapeutic potentials. Nutrients, 12, 1739. DOI: 10.3390/nu12061739.
  • 10. Borges, R.S., Ortiz, B.L.S., Pereira, A.C.M., Keita, H. & Carvalho, J.C.T. (2019). Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 229, 29–45. DOI: 10.1016/j.jep.2018.09.038.
  • 11. Ghazanfari, N., Mortazavi, S.A., Yazdi, F.T. & Mohammadi, M. (2020). Microwave-assisted hydro-distillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity. Heliyon 6(9), e04893. DOI: 10.1016/j.heliyon.2020.e04893.
  • 12. Wei, L., Zhang, Y. & Jiang, B. (2013). Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Dwarfed Cinnamomum Camphora var. Linaolifera Fujita leaves and twigs. Adv. J. Food Sci. Technol. 5(11), 1436–1442. DOI: 10.19026/ajfst.5.3363.
  • 13. Huzar, E., Dzięcioł, M., Wodnicka, A., Örün, H., İçöz, A. & Çiçek, E. (2018). Influence of hydrodistillation conditions on yield and composition of coriander (Coriandrum sativum L.) essential oil. Pol. J. Food Nutr. Sci. 68(3), 243–249. DOI: 10.1515/pjfns-2018-000.
  • 14. Pingret, D., Fabiano-Tixier, A.S. & Chemat, F. (2014). An improved ultrasound Clevenger for extraction of essential oils. Food Anal. Methods 7, 9–12. DOI 10.1007/s12161-013-9581-0.
  • 15. Filly, A., Fabiano-Tixier, A.S., Louis, C., Fernandez, X. & Chemat, F. (2016). Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. C. R. Chimie 19, 707–717. DOI: 10.1016/j.crci.2016.01.018.
  • 16. Flamini, G., Melai, B., Pistelli, L. & Chiappe, C. (2015). How to make a green product greener: use of ionic liquids as additives during essential oil hydrodistillation. RSC Adv. 5, 69894–69898. DOI: 10.1039/c5ra12649e.
  • 17. Dzięcioł, M. (2021). Effect of chemical modification of hydrodistillation on yield, composition and biological activity of Rosmarinus officinalis essential oil. Pol. J. Chem. Technol. 23(3), 49–53. DOI: 10.2478/pjct-2021-0030.
  • 18. Zhang, Z., Qin, Q. Ding, R., Xia, Y., Xiong, L., Bi, Y. & Prusky, D. (2018). Acidolysis-dominated pretreatment elevates distillation yield and impacts composition, antioxidant and antifungal activities of essential oil from Cuminum cyminum seeds. RSC Adv. 8, 32283–32295. DOI: 10.1039/c8ra03575j.
  • 19. Jesionek, A., Kokotkiewicz, Krolicka, A., Zabiegala, B. & Luczkiewicz, M. (2018). Elicitation strategies for the improvement of essential oil content in Rhododendron tomentosum (Ledum palustre) bioreactor-grown micro-shoots. Ind. Crop. Prod. 123, 461–469. DOI: 10.1016/j. indcrop.2018.07.013.
  • 20. Zhang, Q., Gao, W., Guo, Y., Li, Y., Cao, X., Xu, W., Yang, L. & Chen, F. (2020). Aqueous enzyme-ultrasonic pretreatment for efficient isolation of essential oil from Artemisia argyi and investigation on its chemical composition and biological activity. Ind. Crops Prod. 158, 113031. DOI: 10.1016/j.indcrop.2020.113031.
  • 21. Antoniotti, S. (2014). Tuning of essential oil properties by enzymatic treatment: towards sustainable processes for the generation of new fragrance ingredients. Molecules 19, 9203–9214. DOI: 10.3390/molecules19079203.
  • 22. Miljanović, A., Bielen, A., Grbin, D., Marijanović, Z., Andlar, M., Rezić, T., Roca, S., Jerković, I., Vikić--Topić, D. & Dent,M. (2020). Effect of enzymatic, ultra-sound, and reflux extraction pretreatments on the yield and chemical composition of essential oils, Molecules 25, 4818–4829. DOI: 10.3390/molecules25204818.
  • 23. Chávez-González, M.L., López-López, L.I., Rodríguez-Herrera, R., Contreras-Esquivel J.C. & Aguilar, C.N. (2016). Enzyme-assisted extraction of citrus essential oil. Chem. Pape 70(4), 412–417. DOI: 10.1515/chempap-2015-0234.
  • 24. Rashed, M.M.A., Tong, Q., Rotail, A., Al-Fargad, A., Aboshora, W. & Al-Hajj, N.Q.M. (2017). Extraction of essential oil from Lavandula angustifolia flowers preceded by enzymatic pre-treatment and investigate its activity against free radicals. Internat. J. Res. Agric. Sci., 4(2), 106–110. ISSN (Online): 2348–3997.
  • 25. Chandran, J., Amma, K.P.P., Menon, N., Purushothaman, J. & Nisha, P. (2012). Effect of enzyme assisted extraction on quality and yield of volatile oil from black pepper and cardamom. Food Sci. Biotechnol. 21, 1611–1617. DOI: 10.1007/s10068-012-0214-y.
  • 26. Galiano, F., Mecchia, A., Castro-Muñoz, R., Tagarelli, A., Lavecchia, R., Cassano, A. & Figoli, A. (2019). Enzyme-mediated extraction of limonene, linalool and linalyl acetate from bergamot peel oil by pervaporation. J. Membr. Sci. Res. 5, 187–193. DOI: 10.22079/JMSR.2018.95080.1221.
  • 27. Hosni, K., Hassen, I., Chaâbane, H., Jemli, M., Dallali, S., Sebei, H. & Casabianca, H. (2013). Enzyme--assisted extraction of essential oils from thyme (Thymus capitatus L.) and rosemary (Rosmarinus officinalis L.): Impact on yield, chemical composition and antimicrobial activity. Ind. Crop. Prod. 47, 291–299. DOI: 10.1016/j. indcrop.2013.03.023.
  • 28. Dimaki, V.D., Iatrou, G. & Lamari, F.N. (2017). Effect of acidic and enzymatic pretreatment on the analysis of mountain tea (Sideritis spp.) volatiles via distillation and ultrasound-assisted extraction. J. Chromatogr. A, 1524, 290–297. DOI: 10.1016/j.chroma.2017.10.011.
  • 29. Babushok, V.I., Linstrom, P.J. & Zenkevich, I.G. (2011). Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 40, Article ID 043101, 1–47. DOI: 10.1063/1.3653552.
  • 30. Prior, R.L., Wu, X. & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302. DOI: 10.1021/jf0502698.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42a7f84a-3544-4012-9ded-55d2d3b3c61f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.